Windows 安装Tensorflow2.1、Pycharm开发环境

文章目录

1、安装anaconda

https://www.anaconda.com/download

打开命令行工具,出现base就表示安装成功了,表示当前的虚拟环境名


2、安装Tensoflow

2.1、创建虚拟环境

在刚才的命令行中进行操作

bash 复制代码
# 创建一个名字为TF2.1的python3.7版本的虚拟环境
conda create -n TF2.1 python=3.7

# 进入虚拟环境(会发现(base)变成了TF2.1表示当然进入了我们创建的虚拟环境)
conda activate TF2.1

2.2、安装Tensorflow依赖

bash 复制代码
# 如果不支持GUP则跳过这两步
# 英伟达SDK=10.1
conda install cudatoolkit=10.1

# 英伟达深度学习软件包7.6
conda install cudnn=7.6

安装tensorflow
pip install tensorflow==2.1

2.3、验证Tensorflow是否成功

查看版本号,如果版本号输出时2.1表示tensorflow安装成功

python 复制代码
python
import tensorflow as tf
tf.__version__

3、配置pycharm环境

打开pycharm创建项目,选择刚才通过anaconda创建的虚拟环境进行开发

创建成功之后,输入以下代码进行验证,第一行时获取版本号,第二行时获取当前是否支持GPU,后面的计算两个变量之和

python 复制代码
import tensorflow as tf


def print_hi(name):
    # Use a breakpoint in the code line below to debug your script.
    print(f'Hi, {name}')  # Press Ctrl+F8 to toggle the breakpoint.


def tensorflow_t():
    tensorflow_version = tf.__version__
    gpu_available = tf.test.is_gpu_available()
    print("tensorflow version :", tensorflow_version, "\tGPU available:", gpu_available)

    a = tf.constant([1.0, 2.0], name="a")
    b = tf.constant([1.0, 2.0], name="b")
    result = tf.add(a, b, name="add")
    print(result)


if __name__ == '__main__':
    tensorflow_t()

4、错误记录

Could not load dynamic library 'cudart64_101.dll'; dlerror: cudart64_101.dll not found
如果出现cudart64_101.dll找不到去官网进行下载一个放到C:\Windows\System32目录下

官网网址:https://www.dll-files.com/cudart64_101.dll.html

相关推荐
方见华Richard5 分钟前
自指宇宙学:存在如何通过自我描述而实在化V0.2
人工智能·交互·原型模式·空间计算
liliangcsdn16 分钟前
基于人类反馈的强化学习框架-RLHF&PPO
人工智能·机器学习
猫天意16 分钟前
YOLOv11魔改高效涨点 | 注意力篇 | 坐标注意力CoordAttention:将位置信息硬核嵌入通道,精准捕获长程空间依赖,即插即用,涨点神器!!!
开发语言·人工智能·深度学习·神经网络·yolo·目标检测·低光照增强
irizhao17 分钟前
《高质量数据集 分类指南》解读(TC609-5-2025-03)由全国数据标准化技术委员会发布
大数据·人工智能
观无17 分钟前
VisionPro 视觉检测工具基础知识点
人工智能·计算机视觉·视觉检测
min18112345618 分钟前
HR人力资源招聘配置流程图制作教程
大数据·网络·人工智能·架构·流程图·求职招聘
ai_xiaogui21 分钟前
Stable Diffusion Web UI 绘世版 v4.6.1 整合包:一键极速部署,深度解决 AI 绘画环境配置与 CUDA 依赖难题
人工智能·stable diffusion·环境零配置·高性能内核优化·全功能插件集成·极速部署体验
Elastic 中国社区官方博客40 分钟前
使用 Elasticsearch 管理 agentic 记忆
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
升职佳兴41 分钟前
从 0 到 1:我做了一个提升 AI 对话效率的浏览器插件(架构+实现+发布)
人工智能·架构
linmoo19861 小时前
Langchain4j 系列之二十二 - Embedding Models
人工智能·langchain·embedding·嵌入模型·langchain4j