Windows 安装Tensorflow2.1、Pycharm开发环境

文章目录

1、安装anaconda

https://www.anaconda.com/download

打开命令行工具,出现base就表示安装成功了,表示当前的虚拟环境名


2、安装Tensoflow

2.1、创建虚拟环境

在刚才的命令行中进行操作

bash 复制代码
# 创建一个名字为TF2.1的python3.7版本的虚拟环境
conda create -n TF2.1 python=3.7

# 进入虚拟环境(会发现(base)变成了TF2.1表示当然进入了我们创建的虚拟环境)
conda activate TF2.1

2.2、安装Tensorflow依赖

bash 复制代码
# 如果不支持GUP则跳过这两步
# 英伟达SDK=10.1
conda install cudatoolkit=10.1

# 英伟达深度学习软件包7.6
conda install cudnn=7.6

安装tensorflow
pip install tensorflow==2.1

2.3、验证Tensorflow是否成功

查看版本号,如果版本号输出时2.1表示tensorflow安装成功

python 复制代码
python
import tensorflow as tf
tf.__version__

3、配置pycharm环境

打开pycharm创建项目,选择刚才通过anaconda创建的虚拟环境进行开发

创建成功之后,输入以下代码进行验证,第一行时获取版本号,第二行时获取当前是否支持GPU,后面的计算两个变量之和

python 复制代码
import tensorflow as tf


def print_hi(name):
    # Use a breakpoint in the code line below to debug your script.
    print(f'Hi, {name}')  # Press Ctrl+F8 to toggle the breakpoint.


def tensorflow_t():
    tensorflow_version = tf.__version__
    gpu_available = tf.test.is_gpu_available()
    print("tensorflow version :", tensorflow_version, "\tGPU available:", gpu_available)

    a = tf.constant([1.0, 2.0], name="a")
    b = tf.constant([1.0, 2.0], name="b")
    result = tf.add(a, b, name="add")
    print(result)


if __name__ == '__main__':
    tensorflow_t()

4、错误记录

Could not load dynamic library 'cudart64_101.dll'; dlerror: cudart64_101.dll not found
如果出现cudart64_101.dll找不到去官网进行下载一个放到C:\Windows\System32目录下

官网网址:https://www.dll-files.com/cudart64_101.dll.html

相关推荐
TDengine (老段)5 小时前
从“被动养护”到“主动预警”,TDengine IDMP 让智慧桥梁靠数据“说话”
大数据·数据库·人工智能·物联网·时序数据库·tdengine·涛思数据
机器人行业研究员5 小时前
破局与重构:2025年中国六维力传感器产业的价值升维之路
人工智能·机器人·人机交互·六维力传感器·关节力传感器
audyxiao0015 小时前
AI一周重要会议和活动概览(12.29-1.4)
人工智能·acl·一周会议与活动·jcai
愚公搬代码5 小时前
【愚公系列】《扣子开发 AI Agent 智能体应用》023-实战案例:图文混合的火爆推文生成器
人工智能
Tan38515 小时前
如何在 OfficeAI 上配置 API Key(图文教程)
开发语言·人工智能·c#·api·教程·officeai
jiayong235 小时前
知识库最佳实践与优化指南04
大数据·人工智能·机器学习
aitoolhub6 小时前
AI视频生成:核心技术框架与工作逻辑
人工智能·计算机视觉·aigc·音视频·设计语言
信也科技布道师6 小时前
互动视频技术在销售AI培训中的最佳实践
人工智能·ai·视频
IT_陈寒6 小时前
Python 3.12 性能优化:5 个鲜为人知但提升显著的技巧让你的代码快如闪电
前端·人工智能·后端
大任视点6 小时前
楼秀余院士博鳌演讲:打开“年轻开关”的科学钥匙
人工智能