Windows 安装Tensorflow2.1、Pycharm开发环境

文章目录

1、安装anaconda

https://www.anaconda.com/download

打开命令行工具,出现base就表示安装成功了,表示当前的虚拟环境名


2、安装Tensoflow

2.1、创建虚拟环境

在刚才的命令行中进行操作

bash 复制代码
# 创建一个名字为TF2.1的python3.7版本的虚拟环境
conda create -n TF2.1 python=3.7

# 进入虚拟环境(会发现(base)变成了TF2.1表示当然进入了我们创建的虚拟环境)
conda activate TF2.1

2.2、安装Tensorflow依赖

bash 复制代码
# 如果不支持GUP则跳过这两步
# 英伟达SDK=10.1
conda install cudatoolkit=10.1

# 英伟达深度学习软件包7.6
conda install cudnn=7.6

安装tensorflow
pip install tensorflow==2.1

2.3、验证Tensorflow是否成功

查看版本号,如果版本号输出时2.1表示tensorflow安装成功

python 复制代码
python
import tensorflow as tf
tf.__version__

3、配置pycharm环境

打开pycharm创建项目,选择刚才通过anaconda创建的虚拟环境进行开发

创建成功之后,输入以下代码进行验证,第一行时获取版本号,第二行时获取当前是否支持GPU,后面的计算两个变量之和

python 复制代码
import tensorflow as tf


def print_hi(name):
    # Use a breakpoint in the code line below to debug your script.
    print(f'Hi, {name}')  # Press Ctrl+F8 to toggle the breakpoint.


def tensorflow_t():
    tensorflow_version = tf.__version__
    gpu_available = tf.test.is_gpu_available()
    print("tensorflow version :", tensorflow_version, "\tGPU available:", gpu_available)

    a = tf.constant([1.0, 2.0], name="a")
    b = tf.constant([1.0, 2.0], name="b")
    result = tf.add(a, b, name="add")
    print(result)


if __name__ == '__main__':
    tensorflow_t()

4、错误记录

Could not load dynamic library 'cudart64_101.dll'; dlerror: cudart64_101.dll not found
如果出现cudart64_101.dll找不到去官网进行下载一个放到C:\Windows\System32目录下

官网网址:https://www.dll-files.com/cudart64_101.dll.html

相关推荐
方见华Richard3 分钟前
世毫九《认知几何学修订版:从离散概念网络到认知拓扑动力学》
人工智能·经验分享·交互·原型模式·空间计算
x***r15114 分钟前
Putty远程管理软件安装步骤详解(附首次连接教程)
windows
人工智能培训14 分钟前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·深度学习·机器学习·transformer·知识图谱·数字孪生·大模型幻觉
emma羊羊27 分钟前
【AI技术安全】
网络·人工智能·安全
玄同76528 分钟前
告别 AgentExecutor:LangChain v1.0+ Agent 模块深度迁移指南与实战全解析
人工智能·语言模型·自然语言处理·langchain·nlp·agent·智能体
Fxrain35 分钟前
[Reading Paper]FFA-Net
图像处理·人工智能·计算机视觉
GISer_Jing36 分钟前
Memory、Rules、Skills、MCP如何重塑AI编程
前端·人工智能·aigc·ai编程
DS随心转APP37 分钟前
ChatGPT和Gemini回答怎么导出
人工智能·ai·chatgpt·deepseek·ds随心转
大模型玩家七七41 分钟前
向量数据库实战:从“看起来能用”到“真的能用”,中间隔着一堆坑
数据库·人工智能·python·深度学习·ai·oracle
AC赳赳老秦44 分钟前
科研数据叙事:DeepSeek将实验数据转化为故事化分析框架
开发语言·人工智能·数据分析·r语言·时序数据库·big data·deepseek