谈谈 Kafka 的幂等性 Producer

使用消息队列,我们肯定希望不丢消息,也就是消息队列组件,需要保证消息的可靠交付。消息交付的可靠性保障,有以下三种承诺:

  • 最多一次(at most once):消息可能会丢失,但绝不会被重复发送。
  • 至少一次(at least once):消息不会丢失,但有可能被重复发送。
  • 精确一次(exactly once):消息不会丢失,也不会被重复发送。

默认是一般是 至少一次,也就是 Broker 收到并成功提交消息,并且 Producer 成功应答才会认为消息已经发送。

某些情况下,比如网络波动等,导致应答没有成功送达,会导致 Producer 重试,从而导致消息的重复发送。

这就要提到主角------幂等性 Producer 了。

幂等性,比如数学中的乘法运算,乘以 1 就是一个幂等操作。因为不管执行多少次乘法,结果都是一样的。

幂等性 Producer 就是在向 Broker 发送数据时,可以避免同个分区下的消息重复。

开启方式仅需指定 enable.idempotencetrue

但是!

有个很重要的一点,它针对的是单个分区下的幂等,而且是单个会话内的幂等,也就是说,如果进程重启,就没办法保证幂等性了。

而幂等性的实现原理,就得提到 ProducerIDSequenceNumber 了。

  • ProducerID:Producer 初始化会被分配一个唯一标识,对客户端无感知,重启会发生变化;
  • SequenceNumber:对于每个主题和分区,都对应一个从 0 开始单调递增的 SequenceNumber 值,Broker 也会存储。

判断重复的逻辑,原理就很简单了:

通过 ProducerID 和 SequenceNumber,去 Broker 查询队列 ProducerStateEntry.Queue(默认队列长度为 5)是否存在:

  • 如果 Producer SequenceNumber == Broker SequenceNumber + 1,接收消息;
  • 如果 Producer SequenceNumber == 0 && Broker SequenceNumber == MaxInt,接收消息(刚初始化);
  • 否则,就是重复了,拒绝接收。

由此看出,ProducerID 和 SequenceNumber 可以避免消息的重复发送,也避免消息乱序(因为 SequenceNumber 单调递增)。

做到幂等性,也就意味着可以安全重试任何操作。从而做到了消息的可靠传输。

然而,还有个很重要的一点,就是上面说的,上面讲的都是分区下的幂等,多个分区的幂等性,需要通过 事务 来解决。

限于篇幅,今天先记录到这里,事务的待我好好研究下再写哈哈!最后,祝大家新年快乐!


文章来源于本人博客,发布于 2023-01-01,原文链接:https://imlht.com/archives/414/

相关推荐
BD_Marathon几秒前
Kafka文件存储机制
分布式·kafka
哈哈很哈哈2 小时前
Spark 运行流程核心组件(三)任务执行
大数据·分布式·spark
jakeswang7 小时前
应用缓存不止是Redis!——亿级流量系统架构设计系列
redis·分布式·后端·缓存
Aspirin_Slash9 小时前
docker-compose部署kafka with kraft 配置内网公网同时访问
kafka
君不见,青丝成雪9 小时前
大数据技术栈 —— Redis与Kafka
数据库·redis·kafka
不久之9 小时前
大数据服务完全分布式部署- 其他组件(阿里云版)
分布式·阿里云·云计算
Direction_Wind10 小时前
粗粮厂的基于spark的通用olap之间的同步工具项目
大数据·分布式·spark
tan77º1 天前
【项目】分布式Json-RPC框架 - 项目介绍与前置知识准备
linux·网络·分布式·网络协议·tcp/ip·rpc·json
BYSJMG1 天前
计算机大数据毕业设计推荐:基于Hadoop+Spark的食物口味差异分析可视化系统【源码+文档+调试】
大数据·hadoop·分布式·python·spark·django·课程设计
Viking_bird1 天前
Apache Spark 3.2.0 开发测试环境部署指南
大数据·分布式·ajax·spark·apache