【机器学习】西瓜书学习心得及课后习题参考答案—第6章支持向量机

笔记心得

6.1 间隔与支持向量------ w w w是法向量,垂直与超平面 w T x + b = 0 w^Tx+b=0 wTx+b=0。这一节了解了支持向量机的基本型。
min ⁡ w , b 1 2 ∣ ∣ w ∣ ∣ 2 s . t . y i ( w T x i + b ) ≥ 1 , i = 1 , 2 , . . . , m . \min_{w,b} \frac{1}{2}||w||^2 \\ s.t. \ \ y_i(w^Tx_i+b) \ge 1, \qquad i=1,2,...,m. w,bmin21∣∣w∣∣2s.t. yi(wTxi+b)≥1,i=1,2,...,m.

6.2 对偶问题------SVM的基本型是一个凸二次规划问题,可以用更高效的方法求解。使用拉格朗日乘子法得到其"对偶问题"。了解了KKT条件,SMO算法。

6.3 核函数------了解了能作为核函数的条件,和常用的核函数。

6.4 软间隔与正则化------这一节主要是讨论缓解过拟合问题。

6.5 支持向量回归------支持向量机解决回归问题。所构建的间隔带两侧松弛程度可不同。

术语学习

课后习题

6.1 试证明样本空间中任意点 x x x到超平面 ( w , b ) (w,b) (w,b)的距离为式 (6.2)。

假设点 x 0 = ( x 1 0 , x 2 0 , . . . , x n 0 ) x_0=(x_1^0,x_2^0,...,x_n^0) x0=(x10,x20,...,xn0),其在超平面 w T x + b = 0 w^Tx+b=0 wTx+b=0上的投影点为 x 1 = ( x 1 1 , x 2 1 , . . . , x n 1 ) x_1=(x_1^1,x_2^1,...,x_n^1) x1=(x11,x21,...,xn1),则 w T x 1 + b = 0 w^Tx_1+b=0 wTx1+b=0。
w w w为法向量,因此 x 0 x 1 → \overrightarrow{x_{0}x_{1}} x0x1 与法向量 w w w平行。夹角为0或者 π \pi π
∣ w ⋅ x 0 x 1 → ∣ = ∣ ∣ ∣ w ∣ ∣ ⋅ c o s π ⋅ ∣ ∣ x 0 x 1 → ∣ ∣ ∣ = ∣ ∣ w ∣ ∣ ⋅ ∣ ∣ x 0 x 1 → ∣ ∣ = ∣ ∣ w ∣ ∣ ⋅ r |w\cdot \overrightarrow{x_0x_1}| = |||w|| \cdot cos\pi \cdot ||\overrightarrow{x_0x_1} ||| = ||w|| \cdot ||\overrightarrow{x_0x_1}|| = ||w||\cdot r ∣w⋅x0x1 ∣=∣∣∣w∣∣⋅cosπ⋅∣∣x0x1 ∣∣∣=∣∣w∣∣⋅∣∣x0x1 ∣∣=∣∣w∣∣⋅r

同时

∣ w ⋅ x 0 x 1 → ∣ = ∣ w 1 ( x 1 1 − x 1 0 ) + w 2 ( x 2 1 − x 2 0 ) + . . . + w 1 ( x n 1 − x n 0 ) ∣ = ∣ w 1 x 1 1 + w 2 x 2 1 + . . . + w n x n 1 − ( w 1 x 1 0 + w 2 x 2 0 + . . . + w n x n 0 ) ∣ = ∣ w T x 1 − w T x 0 ∣ = ∣ − b − w T x 0 ∣ = ∣ w T x 0 + b ∣ |w \cdot \overrightarrow{x_0x_1}| \\ =|w_1(x_1^1-x_1^0)+w_2(x_2^1-x_2^0)+...+w_1(x_n^1-x_n^0)| \\ =|w_1x_1^1+w_2x_2^1+...+w_nx_n^1-(w_1x_1^0+w_2x_2^0+...+w_nx_n^0)| \\ =|w^Tx_1-w^Tx_0| \\ =|-b-w^Tx_0| \\ =|w^Tx_0+b| ∣w⋅x0x1 ∣=∣w1(x11−x10)+w2(x21−x20)+...+w1(xn1−xn0)∣=∣w1x11+w2x21+...+wnxn1−(w1x10+w2x20+...+wnxn0)∣=∣wTx1−wTx0∣=∣−b−wTx0∣=∣wTx0+b∣

所以
∣ w T x 0 + b ∣ = ∣ ∣ w ∣ ∣ ⋅ r r = ∣ w T x 0 + b ∣ ∣ ∣ w ∣ ∣ |w^Tx_0+b| = ||w||\cdot r \\ r = \frac{|w^Tx_0+b|}{||w||} ∣wTx0+b∣=∣∣w∣∣⋅rr=∣∣w∣∣∣wTx0+b∣

相关推荐
开源技术30 分钟前
深入了解Turso,这个“用Rust重写的SQLite”
人工智能·python
初恋叫萱萱31 分钟前
构建高性能生成式AI应用:基于Rust Axum与蓝耘DeepSeek-V3.2大模型服务的全栈开发实战
开发语言·人工智能·rust
水如烟8 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
大山同学8 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
薛定谔的猫19828 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
壮Sir不壮8 小时前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
PaperRed ai写作降重助手8 小时前
高性价比 AI 论文写作软件推荐:2026 年预算友好型
人工智能·aigc·论文·写作·ai写作·智能降重
玉梅小洋8 小时前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具
-嘟囔着拯救世界-8 小时前
【保姆级教程】Win11 下从零部署 Claude Code:本地环境配置 + VSCode 可视化界面全流程指南
人工智能·vscode·ai·编辑器·html5·ai编程·claude code
正见TrueView9 小时前
程一笑的价值选择:AI金玉其外,“收割”老人败絮其中
人工智能