opencv基础40-礼帽运算(原始图像减去其开运算)cv2.MORPH_TOPHAT

礼帽运算是用原始图像减去其开运算图像的操作。礼帽运算能够获取图像的噪声信息,或者得到比原始图像的边缘更亮的边缘信息。

例如,图 8-22 是一个礼帽运算示例,其中:

  • 左图是原始图像。
  • 中间的图是开运算图像。
  • 右图是原始图像减开运算图像所得到的礼帽图像。

将函数 cv2.morphologyEx()中操作类型参数 op 设置为"cv2.MORPH_TOPHAT",可以实现礼帽运算。其语法结构如下:

result = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)

代码示例:

复制代码
import cv2
import numpy as np
o1=cv2.imread("tophat.bmp",cv2.IMREAD_UNCHANGED)

k=np.ones((5,5),np.uint8)
r1=cv2.morphologyEx(o1,cv2.MORPH_TOPHAT,k)

cv2.imshow("original1",o1)
cv2.imshow("result1",r1)

cv2.waitKey()
cv2.destroyAllWindows()

运行结果:

原图:

相关推荐
lucky_lyovo1 分钟前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn5 分钟前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy9 分钟前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
静心问道32 分钟前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域34 分钟前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源
亲持红叶36 分钟前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
说私域36 分钟前
线上协同办公时代:以开源AI大模型等工具培养网感,拥抱职业变革
人工智能·开源
群联云防护小杜37 分钟前
深度隐匿源IP:高防+群联AI云防护防绕过实战
运维·服务器·前端·网络·人工智能·网络协议·tcp/ip
摘星编程43 分钟前
构建智能客服Agent:从需求分析到生产部署
人工智能·需求分析·智能客服·agent开发·生产部署
不爱学习的YY酱1 小时前
信息检索革命:Perplexica+cpolar打造你的专属智能搜索中枢
人工智能