opencv基础40-礼帽运算(原始图像减去其开运算)cv2.MORPH_TOPHAT

礼帽运算是用原始图像减去其开运算图像的操作。礼帽运算能够获取图像的噪声信息,或者得到比原始图像的边缘更亮的边缘信息。

例如,图 8-22 是一个礼帽运算示例,其中:

  • 左图是原始图像。
  • 中间的图是开运算图像。
  • 右图是原始图像减开运算图像所得到的礼帽图像。

将函数 cv2.morphologyEx()中操作类型参数 op 设置为"cv2.MORPH_TOPHAT",可以实现礼帽运算。其语法结构如下:

result = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)

代码示例:

复制代码
import cv2
import numpy as np
o1=cv2.imread("tophat.bmp",cv2.IMREAD_UNCHANGED)

k=np.ones((5,5),np.uint8)
r1=cv2.morphologyEx(o1,cv2.MORPH_TOPHAT,k)

cv2.imshow("original1",o1)
cv2.imshow("result1",r1)

cv2.waitKey()
cv2.destroyAllWindows()

运行结果:

原图:

相关推荐
xiangduanjava3 分钟前
关于安装Ollama大语言模型本地部署工具
人工智能·语言模型·自然语言处理
zzywxc78723 分钟前
AI 正在深度重构软件开发的底层逻辑和全生命周期,从技术演进、流程重构和未来趋势三个维度进行系统性分析
java·大数据·开发语言·人工智能·spring
超龄超能程序猿26 分钟前
(1)机器学习小白入门 YOLOv:从概念到实践
人工智能·机器学习
大熊背35 分钟前
图像处理专业书籍以及网络资源总结
人工智能·算法·microsoft
江理不变情42 分钟前
图像质量对比感悟
c++·人工智能
张较瘦_3 小时前
[论文阅读] 人工智能 + 软件工程 | 需求获取访谈中LLM生成跟进问题研究:来龙去脉与创新突破
论文阅读·人工智能
一 铭4 小时前
AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程
人工智能·语言模型·大模型·llm·prompt
顾道长生'5 小时前
(Arxiv-2025)通过动态 token 剔除实现无需训练的高效视频生成
计算机视觉·音视频·视频生成
麻雀无能为力7 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心7 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列