opencv基础40-礼帽运算(原始图像减去其开运算)cv2.MORPH_TOPHAT

礼帽运算是用原始图像减去其开运算图像的操作。礼帽运算能够获取图像的噪声信息,或者得到比原始图像的边缘更亮的边缘信息。

例如,图 8-22 是一个礼帽运算示例,其中:

  • 左图是原始图像。
  • 中间的图是开运算图像。
  • 右图是原始图像减开运算图像所得到的礼帽图像。

将函数 cv2.morphologyEx()中操作类型参数 op 设置为"cv2.MORPH_TOPHAT",可以实现礼帽运算。其语法结构如下:

result = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)

代码示例:

复制代码
import cv2
import numpy as np
o1=cv2.imread("tophat.bmp",cv2.IMREAD_UNCHANGED)

k=np.ones((5,5),np.uint8)
r1=cv2.morphologyEx(o1,cv2.MORPH_TOPHAT,k)

cv2.imshow("original1",o1)
cv2.imshow("result1",r1)

cv2.waitKey()
cv2.destroyAllWindows()

运行结果:

原图:

相关推荐
棒棒的皮皮21 分钟前
【深度学习】YOLO模型评估之指标、可视化曲线分析
人工智能·深度学习·yolo·计算机视觉
驭白.40 分钟前
不止于自动化:新能源汽车智造的数字基座如何搭建?
大数据·人工智能·自动化·汽车·数字化转型·制造业
企业智能研究1 小时前
什么是数据治理?数据治理对企业有什么用?
大数据·人工智能·数据分析·agent
阿里云大数据AI技术1 小时前
面向 Interleaved Thinking 的大模型 Agent 蒸馏实践
人工智能
AI Echoes1 小时前
LangChain 非分割类型的文档转换器使用技巧
人工智能·python·langchain·prompt·agent
哔哔龙2 小时前
LangChain核心组件可用工具
人工智能
全栈独立开发者2 小时前
点餐系统装上了“DeepSeek大脑”:基于 Spring AI + PgVector 的 RAG 落地指南
java·人工智能·spring
2501_941878742 小时前
在班加罗尔工程实践中构建可持续演进的机器学习平台体系与技术实现分享
人工智能·机器学习
guoketg2 小时前
BERT的技术细节和面试问题汇总
人工智能·深度学习·bert
永远在Debug的小殿下2 小时前
SLAM开发环境(虚拟机的安装)
人工智能