【深度学习注意力机制系列】—— SCSE注意力机制(附pytorch实现)

SCSE注意力模块 (来自论文[1803.02579] Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks (arxiv.org))。其对SE注意力模块进行了改进,提出了cSE、sSE、scSE 三个模块变体,这些模块可以增强有意义的特征,抑制无用特征。今天我们就分别讲解一下这三个注意力模块。

1、cSE模块(通道维度的SE注意力机制)

cSE模块 引入了通道注意力机制,可有效的对通道维度的特征信息进行整合增强,这一点与SE等传统通道注意力机制近似,其最大不同的是其对得到的注意力权重进行了降维再升维的操作,类似与resnet中的瓶颈结构以及Fast RCNN目标检测网络最后的全连接加速层,这种操作方式有些奇异值分解的意思,在深度学习模型中十分常见,可有效的整合通道信息,并且简化模块复杂度,减小模型计算量,提升计算速度

实现机制

  • 将特征图通过全局平均池化层将维度从[C, H, W]变为[C, 1, 1]。
  • 然后使用两个1×1卷积进行信息的处理(即降维与升维操作),最终得到C维的向量。
  • 然后使用sigmoid函数进行归一化,得到对应的权重向量文件。
  • 最后通过channel-wise与原始特征图相乘,得到经过通道信息真个校准过的特征图。

代码实现

python 复制代码
class CSE(nn.Module):
    def __init__(self, in_channels, reduction=16):
        super(CSE, self).__init__()
        self.cSE = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels, in_channels // reduction, 1),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels // reduction, in_channels, 1),
            nn.Sigmoid(),
        )
   
    def forward(self, x):
        return x * self.cSE(x)

2、sSE模块(空间维度的SE注意力机制)

sSE模块 在特征图的空间维度 展开信息增强整合,同通道维度一样,其也是通过先提取权重信息,再将权重信息同原始特征图相乘得到注意力增强效果,不过在提取权重信息时是在空间维度展开,不再是使用全局平均池化层,而是使用输出通道为1,卷积核大小为1×1 的卷积层,进行信息整合

这里我们顺便简介一下1×1卷积层的作用

改变通道数 (即升维降维)

信息整合(可实现跨通道的信息交互)

增加非线性(基于奇异值分解,结合非线性激活函数,加深模型)

实现机制

  • 将特征图通过一个输出通道为1,卷积核大小为1×1 的卷积层,得到一个维度为(1, H, W)的权重矩阵。
  • 将权重矩阵进行sigmod归一化处理,得到最终的权重矩阵。
  • 将权重矩阵同原始特征图在空间维度相乘,得到最终空间信息增强特征图结果。

代码实现

python 复制代码
class SSE(nn.Module):
    def __init__(self, in_channels):
        super(SSE, self).__init__()
        self.sSE = nn.Sequential(nn.Conv2d(in_channels, 1, 1), nn.Sigmoid())

    def forward(self, x):
        return x * self.sSE(x)

3、scSE模块(混合维度的SE注意力机制)

scSE模块是sSE模块和cSE模块的综合体,即同时对空间维度和通道维度进行信息整合增强,将两者的特征结果沿着通道维度进行相加(结果和原始特征图维度相同)。

实现机制

  • 将特征图通过cSE模块,得到特征图结果1。
  • 将特征图通过sSE模块,得到特征图结果2.
  • 将特征图结果1和2沿着通道维度相加,得到最终信息校正结果(前后特征图维度不变)。

代码实现

python 复制代码
class SCSE(nn.Module):
    def __init__(self, in_channels, reduction=16):
        super(SCSE, self).__init__()
        self.cSE = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels, in_channels // reduction, 1),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels // reduction, in_channels, 1),
            nn.Sigmoid(),
        )
        self.sSE = nn.Sequential(nn.Conv2d(in_channels, 1, 1), nn.Sigmoid())

    def forward(self, x):
        return x * self.cSE(x) + x * self.sSE(x)
相关推荐
递归尽头是星辰2 分钟前
大模型与向量检索的融合:从核心原理到 Spring AI 落地
人工智能·大模型·向量检索·rag·spring ai·向量库
gihigo19986 分钟前
希尔伯特-黄变换(HHT)完整MATLAB实现
人工智能·算法·matlab
min18112345619 分钟前
AI金融风控:智能反欺诈与个性化理财
大数据·人工智能
20130924162722 分钟前
1982年霍普菲尔德网络奠基之作:深度导读与全景解析报告
人工智能
wanghao66645528 分钟前
机器学习三大流派:监督、无监督与强化学习
人工智能·机器学习
爱喝可乐的老王30 分钟前
神经网络的基础:核心是 “搭积木 + 激活信号”
人工智能·深度学习·神经网络
梁辰兴38 分钟前
FSD入华将如何改变我国自动驾驶市场格局?
人工智能·科技·机器学习·自动驾驶·特斯拉·fds·梁辰兴
AI营销实验室1 小时前
AI营销破解券商获客难引领2026增长新范式
人工智能·microsoft
njsgcs1 小时前
ppo可以不需要提取特征,直接训练ac吗。ppo不知道自己现在在第几步吗
人工智能·ppo
lixin5565561 小时前
基于深度生成对抗网络的高质量图像生成模型研究与实现
java·人工智能·pytorch·python·深度学习·语言模型