玩一玩通义千问Qwen开源版,Win11 RTX3060本地安装记录!

大概在两天前,阿里做了一件大事儿。

就是开源了一个低配版的通义千问模型--通义千问-7B-Chat。

这应该是国内第一个大厂开源的大语言模型吧。

虽然是低配版,但是在各类测试里面都非常能打。

官方介绍:

Qwen-7B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在Qwen-7B的基础上,我们使用对齐机制打造了基于大语言模型的AI助手Qwen-7B-Chat。本仓库为Qwen-7B-Chat的仓库。

同时官方也给出了很多测试结果。

比如中文评测。

在C-Eval验证集上得分对比:

|-------------------------|-----------|
| Model | Avg. Acc. |
| LLaMA2-7B-Chat | 31.9 |
| LLaMA2-13B-Chat | 40.6 |
| Chinese-Alpaca-2-7B | 41.3 |
| Chinese-Alpaca-Plus-13B | 43.3 |
| Baichuan-13B-Chat | 50.4 |
| ChatGLM2-6B-Chat | 50.7 |
| InternLM-7B-Chat | 53.2 |
| Qwen-7B-Chat | 54.2 |

如果单看这个数据。说"吊打"同级别羊驼模型一点不夸张吧。比起热门的开源模型ChatGLM2也高出了不少。

除此之外还有:

英文测评(南玻王)

代码测评(南玻王)

数学测评(南玻王)

长序列测评(南玻王)

工具使用能力测评

全方位碾压同类70亿参数模型,在即将开源的、用于评估工具使用能力的自建评测基准上,居然K·O了GPT-4 哈哈。

|--------------|------------------------|-----------------------|-----------------------|
| Model | Tool Selection (Acc.↑) | Tool Input (Rouge-L↑) | False Positive Error↓ |
| GPT-4 | 95% | 0.90 | 15% |
| GPT-3.5 | 85% | 0.88 | 75% |
| Qwen-7B-Chat | 99% | 0.89 | 8.5% |

我也不太懂,没研究过这个基准测试,反正就是看起来很厉害的样子。

不管怎么样,大厂开源的东西总不会太差。有可能真的是最好的小型中文大语言模型了。

阿里已经亮出态度了,接下来压力给到百度,讯飞,华为... 哈哈~~

既然阿里都开源了,那我们自然就笑纳了,接下就在本机跑一个试试。

下面是我在Win11 RTX3060 12G 上完整的安装记录。玩过的可以跳过,没玩过的可以当个参考。

我的安装思路完全来自官网指引:

官方的安装指引看起来非常简单。只要安装一下modelscope这个包,然后运行一段Python代码就可以了。当然,这个世界上看起来简单的东西,做起来往往都不那么简单。一步一坑是常态,踩过了,就简单了。

常规流程

1.创建并激活虚拟环境。

我们还是用常用的MiniConda来创建一个虚拟的Python环境。

conda create -n models python=3.10.6

激活激活虚拟环境:

conda activate  models

2. 安装modescope基础库

pip install modelscope

3. 编写Python代码

不需要自己编写啊,直接抄官方代码。

创建一个test.py文件,然后将代码粘贴到里面,Ctrl+S 保存代码。

4.运行代码

运行代码也非常简单。上面已经激活了虚拟环境。然后用cd命令,进入到代码所在目录。然后用Python运行就可以了。

E:cd 
E:\DEV\qwen
python test.py

运行代码之后,会自动联网下载一个14G的模型文件。

阿里毕竟是做服务器的,我又在杭州,这速度真的是真是相当给力。不用魔法,就能飞起,这是搞国外项目,永远享受不到的待遇啊。

按正常的节奏来说,下载完大模型,然后运行代码。通义千问大模型就会乖乖的回答我预设的两个问题了。

但是...不可能这么顺利。

其实还有很多包还没装完,我就按我出错的顺序和解决方法,一个个来记录吧。

踩坑记录

1.缺少transformers包

提示信息如下:

复制代码
ImportError:modelscope.pipelines.nlp.text_generation_pipeline requires the transformers library but it was not found in your environment. You can install it with pip:pip install transformers

解决方法很简答,运行提示中的命令即可:

pip install transformers

2. 缺少tiktoken包

提示信息如下:

modelscope.models.nlp.qwen.tokenization requires the tiktoken library but it was not found in your environment. You can install it with pip:pip install tiktoken

解决方法:

pip install tiktoken

3.缺少accelerate包

提示信息如下:

ImportError: QWenChatPipeline: QWenForTextGeneration: Using low_cpu_mem_usage=True or a device_map requires Accelerate: pip install accelerate

解决方法:

pip install accelerate

4.爆显存了OutOfMemory

终于所有包都装完了。

再次运行test.py

软件有条不紊的运行,好像有戏。可惜,最终还是卡在硬件配置上了。

见到了熟悉的OutOfMemory。

torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.16 GiB (GPU 0; 12.00 GiB total capacity; 9.99 GiB already allocated; 200.79 MiB free; 9.99 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

在大语言模型面前,12G显存,啥都不是。

查了一下资料,BF16需要16.2G显存才可以运行...

|-----------|------|--------|
| Precision | MMLU | Memory |
| BF16 | 56.7 | 16.2G |
| Int8 | 52.8 | 10.1G |
| NF4 | 48.9 | 7.4G |

遇到这种情况,没啥办法,只能用量化。官方也提供了4bit量化的代码,直接拷贝过来,搞了一个test2.py文件。

5. 运行4bit量化代码出错

错误提示如下:

importlib.metadata.PackageNotFoundError: No package metadata was found for bitsandbytes

大概就是量化的时候需要用到一个叫bitsandbytes的依赖包。

那就安装一下呗:

pip install bitsandbytes

安装非常简单快速,没有任何问题。

6. 量化包不支持Windows

安装完依赖之后运行test2.py 很快就收到了如下错误:

CUDA Setup failed despite GPU being available. Please run the following command to get more information:          python -m bitsandbytes
    Inspect the output of the command and see if you can locate CUDA libraries. You might need to add them    to your LD_LIBRARY_PATH. If you suspect a bug, please take the information from python -m bitsandbytes    and open an issue at: https://github.com/TimDettmers/bitsandbytes/issues

这句话对于对于一个英语只过了4级的人有点难度啊。什么叫尽管有可用的GPU但是CUDA设置失败.... 你这句式是不是等价于,你有一个女朋友,但是不能用!

查了一下资料,bitsandbytes库目前仅支持Linux发行版,Windows目前不受支持。。。

还好上面的资料已经过时了,其实已经有大佬做了Windows版本。

7. Windows版量化包版本太低

为了解决上面一个的问题,找到了一个Windows版本的依赖包。

安装命令如下:

pip install git+https://github.com/Keith-Hon/bitsandbytes-windows.git

安装完成之后,本以为完事大吉了。

还是太年轻...

错误提示如下:

ValueError: 4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version

这个问题出在两个方面,一个是这个包好像只支持8bit量化,而我代码里有用的是4bit。另外一个问题就是错误日志中提到的版本太低。

没办法,又是一顿乱找,狂开N个网页。

最后最终找到了可以用的版本。

安装命令:

python -m pip install bitsandbytes --prefer-binary --extra-index-url=https://jllllll.github.io/bitsandbytes-windows-webui

终于安装成功0.41版本

8 缺少transformers_stream_generator包

习惯了,习惯了。上面的都搞完了,又出现缺包提示。

ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator`

解决方法:

pip install transformers_stream_generator

9. Numpy不可用。

所有包装完之后,运行test2.py,眼看这要成功了,又跳出一个"Numpy is not available" 。

Traceback (most recent call last):File "e:\DEV\qwen\test2.py", line 12, in <module>response, history = model.chat(tokenizer, "你好", history=None)File "C:\Users\tony/.cache\huggingface\modules\transformers_modules\Qwen-7B-Chat\modeling_qwen.py", line 1003, in chatresponse = decode_tokens(File "C:\Users\tony/.cache\huggingface\modules\transformers_modules\Qwen-7B-Chat\qwen_generation_utils.py", line 269, in decode_tokenstokens = tokens.cpu().numpy().tolist()RuntimeError: Numpy is not available

用pip list 查看了一下包列表,明明有这个包,怎么就不能用呢?

不管了,直接更新有一把看看。

把Numpy升级到最新版 :

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy --upgrade

安装过程出现红色提示:

ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.modelscope 1.8.1 requires numpy<=1.22.0, but you have numpy 1.25.2 which is incompatible.Successfully installed numpy-1.25.2

内心凉了一半。

提示里面说modelscope需要的是1.22, 但是我装了1.25.2... 最怕就是这种版本问题了...

我也不知道该怎么排查,想着就死马当活马医了。

最后...居然成功了,这是~~什么道理~~!

通过日志可以看到,AI已经做出了回答。答案也正确且通顺。幸福来的太突然...

到这里,我就成功的在我的Rtx3060 12G上面把"通义千问"给跑起来了。理论上所有的8G N卡也能跑起来!

成功后,心态就平稳很多了,半天功夫没白费,美滋滋。

趁热打铁,抽个几分钟来测试一下运行速度。

start:2023-08-05 11:06:54.399781;
loaded:2023-08-05 11:09:05.583479;
hello:2023-08-05 11:09:21.236158;
where:2023-08-05 11:09:22.543629;
goood:2023-08-05 11:09:28.565053

加载模型用了好几分钟,回答问题大概只用了几秒钟。还不错啊,这速度基本能用了。

按上面的方式运行代码,AI只能回答预设的几个问题。这样搞起来就有点不爽,每次提问,还得改源代码,重新加载模型...

所以我又花了几分钟,写了一个WebUI。

界面如下:

写这个界面和功能,大概只用了23行Python代码。Gradio这东西用起来确实爽,怪不得那么多开源项目都用这个来做界面。

心满意足了!!!

有没有看到这里,还是一头雾水的人?哈哈!

那么我就提供一个无需配置,无需登录,直接可以体验的网址把:

https://modelscope.cn/studios/qwen/Qwen-7B-Chat-Demo/summary

通义千问官方主页:

https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary

有兴趣的可以去玩一玩!

收工!

相关推荐
paixiaoxin1 天前
CV-MLLM经典论文解读| Link-Context Learning for Multimodal LLMs面向多模态大型语言模型的链接上下文学习
人工智能·深度学习·机器学习·计算机视觉·语言模型·大语言模型·mllm
老A的AI实验室2 天前
赛博周刊·2024年度工具精选(图片资源类)
人工智能·ai·llm·大语言模型·图片资源·genai
deephub4 天前
SCOPE:面向大语言模型长序列生成的双阶段KV缓存优化框架
人工智能·深度学习·transformer·大语言模型·kv缓存
OpenSani5 天前
qwenvl 以及qwenvl 2 模型架构理解
语言模型·qwen·qwen2·qwenvl
yuanlulu7 天前
mindie推理大语言模型问题及解决方法汇总
人工智能·华为·自然语言处理·nlp·大语言模型·昇腾
知来者逆9 天前
Binoculars——分析证实大语言模型生成文本的检测和引用量按学科和国家明确显示了使用偏差的多样性和对内容类型的影响
人工智能·深度学习·语言模型·自然语言处理·llm·大语言模型
小任同学Alex9 天前
Lagent:从零搭建你的 Multi-Agent
人工智能·自然语言处理·大模型·大语言模型·多模态
图灵追慕者10 天前
大语言模型学习工具及资源总结和落地应用
大语言模型·工具·落地应用·相关资源
deephub13 天前
LEC: 基于Transformer中间层隐藏状态的高效特征提取与内容安全分类方法
人工智能·深度学习·transformer·大语言模型·特征提取
流穿14 天前
WebSocket vs SSE:实时通信技术的对比与选择
网络·websocket·网络协议·大语言模型·sse