OPENCV C++(七)霍夫线检测+找出轮廓和外接矩形+改进旋转

霍夫线检测

cpp 复制代码
vector<Vec2f> lines1;
	HoughLines(canny_mat, lines1, 1, CV_PI / 180.0,90 );//45可以检测里面两条线 80检测出外边两条线

定义存放输出线的向量 此向量输出有<距离,角度>

因为检测的原理就是在变换霍夫空间里面去检测的,这里可以理解为极坐标

第3个参数是距离精度 第四个参数是角度精度,第五个是阈值,只有点超过90个才算一条线

在图中画线操作:

cpp 复制代码
Point ptz1, ptz2;
	for (size_t i = 0; i < lines1.size(); ++i) {
		float rth = lines1[i][0];//距离
		float theta = lines1[i][1];//角度
	
		double a = cos(theta);
		double b = sin(theta);
		double x0 = a * rth, y0 = b * rth;

		ptz1.x = cvRound(x0 + 1000 * (-b));
		ptz1.y = cvRound(y0 + 1000 * (a));
		ptz2.x = cvRound(x0 - 1000 * (-b));
		ptz2.y = cvRound(y0 - 1000 * (a));

		line(image1, ptz1, ptz2, Scalar(0, 255, 0), 2, 8);

	}

这里是画线操作

概率霍夫线检测

cpp 复制代码
vector<Vec4i>lines2;
	HoughLinesP(canny_mat, lines2, 1, CV_PI / 180.0, 25,25,32);//参数如何设置啊?  点数多少 最小长度 最大容忍间隔

后面三个参数依次是

// 大于阈值threshold的线段才可以被检测通过并返回到结果中。

// 表示最低线段的长度,比这个设定参数短的线段就不能被显现出来

// 允许将同一行点与点之间连接起来的最大的距离

这里的画线操作就简单一点 直接画

cpp 复制代码
	Point ptz3, ptz4;
	for (int j = 0; j < lines2.size(); j++) {
	

	
		ptz3.x = lines2[j][0];
		ptz3.y = lines2[j][1];
		ptz4.x = lines2[j][2];
		ptz4.y = lines2[j][3];
		
		line(image2, ptz3, ptz4, Scalar(0, 255, 255), 2, 8);

	}


轮廓的寻找

cpp 复制代码
	Mat binary;
	threshold(gray, binary, 84, 255, THRESH_OTSU);
	imshow("binary", binary);
	waitKey(0);
	cvDestroyAllWindows();

	vector<vector<Point>> contours;
	findContours(binary, contours, RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
	Mat image3clone = image3.clone();

	for (int i = 0; i < contours.size(); i++) {
		drawContours(image3clone, contours, i, Scalar(0, 255, 255), 2, 8);
	}

先是二值化图像,再用findcontours函数寻找轮廓,后面两个参数是寻找最外轮廓,内接轮廓就不管,用的是简单保存的方式。

画出轮廓用的是drawcontours来画轮廓,直接在图像上画出轮廓即可

画出轮廓外最小外接矩形

cpp 复制代码
Point2f vtx[4];
	RotatedRect rbox = minAreaRect(contours[0]);
	rbox.points(vtx);
	for (int i = 0; i < 4; i++) {
		line(image3, vtx[i], vtx[i < 3 ? i + 1 : 0], CV_RGB(0, 255, 0), 2, CV_AA);
	}

定义4个点存储外接矩形定点,minAreaRect是外接矩形的rect,rbox.points是赋值给vtx,然后用一个简单的画线操作,依次画点和点的连线

改进版的图像旋转

前面的获得矩阵操作一样

cpp 复制代码
	float angel = -10.0, scale = 1;
	Point2f center(lena.cols * 0.5, lena.rows * 0.5);
	Mat rot = getRotationMatrix2D(center, angel, scale);

获得外接矩形的作为最后的大小

cpp 复制代码
Rect bbox = RotatedRect(center, lena.size(), angel).boundingRect();//获取外接矩形

然后得调整rot矩阵得参数,因为中心点有所偏移,需要平移操作

cpp 复制代码
rot.at<double>(0, 2) += bbox.width / 2.0 - center.x;//调整仿射变换矩阵参数【a,b,l/n b,c,m】此步在调节l,m值
rot.at<double>(1, 2) += bbox.height / 2.0 - center.y;//				
Mat dst;
warpAffine(lena, dst, rot, bbox.size());

即可完成没有缺损得旋转图像!

相关推荐
Hello kele2 分钟前
大型项目,选择conda还是Poetry要点分析
人工智能·python·conda·ai编程·poetry
SmallBambooCode4 分钟前
【人工智能】【Python】在Scikit-Learn中使用KNN(K最近邻算法)
人工智能·python·机器学习·scikit-learn·近邻算法
MWWZ19 分钟前
读取halcon中DXF文件并创建模板
opencv·计算机视觉
訾博ZiBo20 分钟前
AI日报 - 2025年3月7日
人工智能
梓羽玩Python23 分钟前
一夜刷屏AI圈!Manus:这不是聊天机器人,是你的“AI打工仔”!
人工智能
Gene_INNOCENT24 分钟前
大型语言模型训练的三个阶段:Pre-Train、Instruction Fine-tuning、RLHF (PPO / DPO / GRPO)
人工智能·深度学习·语言模型
游戏智眼24 分钟前
中国团队发布通用型AI Agent产品Manus;GPT-4.5正式面向Plus用户推出;阿里发布并开源推理模型通义千问QwQ-32B...|游戏智眼日报
人工智能·游戏·游戏引擎·aigc
挣扎与觉醒中的技术人26 分钟前
如何优化FFmpeg拉流性能及避坑指南
人工智能·深度学习·性能优化·ffmpeg·aigc·ai编程
watersink29 分钟前
Dify框架下的基于RAG流程的政务检索平台
人工智能·深度学习·机器学习
脑极体33 分钟前
在MWC2025,读懂华为如何以行践言
大数据·人工智能·华为