Python-OpenCV中的图像处理-几何变换

Python-OpenCV中的图像处理-几何变换

几何变换

对图像进行各种几个变换,例如移动,旋转,仿射变换等。

图像缩放

  • cv2.resize()
  1. cv2.INTER_AREA
  2. v2.INTER_CUBIC
  3. v2.INTER_LINEAR

res = cv2.resize(img, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)

height, width = img.shape[:2]

res = cv2.resize(img, (2width, 2height), interpolation=cv2.INTER_CUBIC)

python 复制代码
import numpy as np
import cv2

# 图像缩放
img = cv2.imread('./resource/image/1.jpg')

# 缩放 时推荐使用cv2.INTER_AREA 
# 扩展 时推荐使用cv2.INTER_CUBIC(慢) 或 cv2.INTER_LINEAR(默认使用)
# 原图放大两倍
res = cv2.resize(img, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)

# 或
#height, width = img.shape[:2]
#res = cv2.resize(img, (2*width, 2*height), interpolation=cv2.INTER_CUBIC)

while True:
    cv2.imshow('res', res)
    cv2.imshow('img', img)

    if cv2.waitKey(1)&0xFF == 27:
        break
cv2.destroyAllWindows()

图像平移

OpenCV提供了使用函数cv2.warpAffine()实现图像平移效果,该函数的语法为

  • cv2.warpAffine(src, M, (cols, rows))
  1. src:输入的源图像
  2. M:变换矩阵,即平移矩阵,M = [[1, 0, tx], [0, 1, ty]] 其中,tx和ty分别代表在x和y方向上的平移距离。
  3. (cols, rows):输出图像的大小,即变换后的图像大小

平移就是将对象换一个位置。如果你要沿( x, y)方向移动,移动的距离

是( tx, ty),你可以以下面的方式构建移动矩阵:
M = [ 1 0 t x 0 1 t y ] M=\left[ \begin{matrix} 1&0&t_x\\ 0 &1 &t_y \end{matrix} \right] M=[1001txty]

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./resource/opencv/image/messi5.jpg')

# 获取图像的行和列
rows, cols = img.shape[:2]

# 定义平移矩阵,沿着y轴方向向下平移100个像素点
# M = np.float32([[1, 0, 0], [0, 1, 100]])

# 定义平移矩阵,沿着x轴方向向右平移50个像素点,沿着y轴方向向下平移100个像素点
M = np.float32([[1, 0, -50], [0 ,1, 100]])

# 执行平移操作
result = cv2.warpAffine(img, M, (cols, rows))

# 显示结果图像
cv2.imshow('result', result)
cv2.waitKey(0)

图像旋转

  • cv2.getRotationMatrix2D()
    对一个图像旋转角度 θ, 需要使用到下面形式的旋转矩阵:
    M = [ c o s θ − s i n θ s i n θ c o s θ ] M=\left[ \begin{matrix} cosθ&-sinθ \\sinθ&cosθ \end{matrix} \right] M=[cosθsinθ−sinθcosθ]
python 复制代码
import numpy as np
import cv2

# 图像旋转 缩放
img = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)
rows,cols = img.shape

# 这里的第一个参数为旋转中心,第二个为旋转角度,第三个为旋转后的缩放因子
# 可以通过设置旋转中心,缩放因子,以及窗口大小来防止旋转后超出边界的问题
M = cv2.getRotationMatrix2D((cols/2, rows/2), 45, 0.6)
print(M)

# 第三个参数是输出图像的尺寸中心
dst = cv2.warpAffine(img, M, (2*cols, 2*rows))
while (1):
    cv2.imshow('img', dst)
    if cv2.waitKey(1)&0xFF == 27:
        break
cv2.destroyAllWindows()

dst = cv2.warpAffine(img, M, (1cols, 1 rows))

仿射变换

在仿射变换中,原图中所有的平行线在结果图像中同样平行。为了创建这个矩阵我们需要从原图像中找到三个点以及他们在输出图像中的位置。然后cv2.getAffineTransform 会创建一个 2x3 的矩阵,最后这个矩阵会被传给函数 cv2.warpAffine。

python 复制代码
import numpy as np
import cv2
from matplotlib import pyplot as plt

# 仿射变换
img = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_COLOR)
rows, cols, ch = img.shape
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGBA)

pts1 = np.float32([[50,50],[200,50],[50,200]])
pts2 = np.float32([[10,100], [200,50], [100,250]])

# 行,列,通道数
M = cv2.getAffineTransform(pts1, pts2)
dts = cv2.warpAffine(img, M, (cols, rows))

plt.subplot(121), plt.imshow(img), plt.title('Input')
plt.subplot(122), plt.imshow(dts), plt.title('Output')
plt.show()

透视变换

对于视角变换,我们需要一个 3x3 变换矩阵。在变换前后直线还是直线。要构建这个变换矩阵,你需要在输入图像上找 4 个点,以及他们在输出图像上对应的位置。这四个点中的任意三个都不能共线。这个变换矩阵可以有函数cv2.getPerspectiveTransform() 构建。然后把这个矩阵传给函数cv2.warpPerspective()

python 复制代码
import numpy as np
import cv2
from matplotlib import pyplot as plt

# 透视变换
img = cv2.imread('./resource/opencv/image/sudoku.png', cv2.IMREAD_COLOR)
rows,cols,ch = img.shape
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

pts1 = np.float32([[60,80],[368,65],[28,387],[389,390]])
pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]])

M = cv2.getPerspectiveTransform(pts1, pts2)
dst = cv2.warpPerspective(img, M, (400, 400))

plt.subplot(121), plt.imshow(img), plt.title('Input')
plt.subplot(122), plt.imshow(dst), plt.title('Output')
plt.show()
相关推荐
彭祥.7 小时前
Jetson边缘计算主板:Ubuntu 环境配置 CUDA 与 cudNN 推理环境 + OpenCV 与 C++ 进行目标分类
c++·opencv·分类
烛阴7 小时前
简单入门Python装饰器
前端·python
超龄超能程序猿8 小时前
(三)PS识别:基于噪声分析PS识别的技术实现
图像处理·人工智能·计算机视觉
好开心啊没烦恼8 小时前
Python 数据分析:numpy,说人话,说说数组维度。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy
面朝大海,春不暖,花不开8 小时前
使用 Python 实现 ETL 流程:从文本文件提取到数据处理的全面指南
python·etl·原型模式
Tony沈哲8 小时前
macOS 上为 Compose Desktop 构建跨架构图像处理 dylib:OpenCV + libraw + libheif 实践指南
opencv·算法
2301_805054569 小时前
Python训练营打卡Day59(2025.7.3)
开发语言·python
万千思绪10 小时前
【PyCharm 2025.1.2配置debug】
ide·python·pycharm
微风粼粼11 小时前
程序员在线接单
java·jvm·后端·python·eclipse·tomcat·dubbo
云天徽上11 小时前
【PaddleOCR】OCR表格识别数据集介绍,包含PubTabNet、好未来表格识别、WTW中文场景表格等数据,持续更新中......
python·ocr·文字识别·表格识别·paddleocr·pp-ocrv5