(统计学习方法|李航)第一章统计学习方法概论——四五六节模型评估与模型选择,正则化与交叉验证,泛化能力

一,模型评估与模型选择

1.训练误差与测试误差

假如我们有100个数据。80条记录给训练集,10条记录给测试集,10条记录给验证集

先在训练集中训练模型,

再在验证集上测试看哪种模型更拟合

最后用测试集算出成绩

表示决策函数

模型拟合的好坏(对已知数据的预测效果)我们可以通过训练集测出训练误差来衡量

对未知数据预测效果好坏可以利用测试集来衡量

  • 预测值和真实值不相等的个数占测试集样本总个数的比例
  • 经过模型的预测值和真实值相等的占样本点的个数。

2.过拟合与模型选择

在多项式拟合问题中 :
就很好的解释了过拟合问题,我们想要去拟合一个正弦函数

我们去选择正弦函数上的点去拟合

当图像是三次函数时,拟合效果是非常不错的,但是为了抓住图像中的每一个细节

(哪怕噪音也不放过,就容易出现过拟合问题)

  • 我们使用的是经验风险最小化的策略
  • 经验风险使用的损失函数是平方损失

要求出最小值就需要求导,这里的二分之一只是为了抵消平方

那么如何去看是否过拟合呢?

  • 他在训练集上拟合效果特别好(每个点集都在图像上)
  • 但是在测试集和验证集上特别差

就是过拟合了!!!

当M=9,训练误差极大,但测试误差极大

二,正则化与交叉验证

1.正则化

最小化结构风险中跟的就是正则项

目的:减少模型的复杂度,防止过拟合的

正则化项有两种形式:

  • L1范数和L2范数
  • w这里叫作参数

这里谈一个奥姆卡剃刀原理:

  • 我们发现当模型复杂度大于等于3的时候,训练集都能很好的拟合,、
  • 则选择最简单的模型

2.交叉验证

(1)简单交叉验证

(2)S折交叉验证

我们只有100个数据,一开始选择这80个数据作为训练集,剩下的是测试集和验证集

后来再随机选出80个,

选出来10种训练集进行模型训练。

选择不同的测试集去训练模型

(3)留一交叉验证

数据非常缺乏的情况下:

此时的N为数据的容量

三,泛化能力

1.泛化误差

  • 泛化误差R(f)
  • 就是对损失函数值loss求出其数学期望
  • 泛化误差反映了学习方法的泛化能力,即所学习到的模型的期望风险。

f-hat(X)为预测值

这里我们之前学的策略里的损失函数的期望值

我们下面给出的红豆绿豆的实例

下面这个是经验风险。

2.泛化误差上界

函数f是从假设空间F中抽取出来的


那么这个泛化误差R(f)(期望风险)是有上界的。

  • d代表的是假设空间中函数的个数
  • N表示训练集中样本的个数
  • 德尔塔则是概率

regulation

(1)当N->无穷大,样本容量增大,那么泛化误差上界就是趋向于0的。

(2)d越大,假设空间越来越复杂,那么泛化误差上界也会增大。

公式推导:

首先我们直到有以下

hoeffding不等式成立:

SN为随机变量求和

即可得:

相关推荐
智算菩萨4 分钟前
Anthropic Claude 4.5:AI分层编排的革命,成本、速度与能力的新平衡
前端·人工智能
小Pawn爷9 分钟前
12. 智能与风险并存:金融AI的成本,合规与伦理平衡术
人工智能·金融·llm·合规
●VON9 分钟前
AI 保险机制:为智能时代的不确定性兜底
人工智能·学习·安全·制造·von
开发者导航10 分钟前
【开发者导航】一键解决AI生成内容格式复制难题的剪贴板工具:PasteMD
人工智能
bu_shuo22 分钟前
将AI生成的数学公式正确复制到word中
人工智能·chatgpt·word·latex
AI科技星25 分钟前
光速飞行器动力学方程的第一性原理推导、验证与范式革命
数据结构·人工智能·线性代数·算法·机器学习·概率论
摘星编程28 分钟前
RAG的下一站:检索增强生成如何重塑企业知识中枢?
android·人工智能
Aaron_94530 分钟前
BitNet:1-bit大语言模型的高效推理框架详解
人工智能·语言模型·自然语言处理
wenzhangli731 分钟前
「1+3 架构驱动」OoderAI 企业级解决方案:破解 AI 落地三大痛点,实现能力可控、交互智能与代码一致
人工智能
视觉&物联智能35 分钟前
【杂谈】-人工智能在风险管理中的应用:愿景与现实的差距
人工智能·网络安全·ai·aigc·agi