Logistic Regression And Regularization

Prior to it , we learn a classic regression algorithm.Now I will show you a case of another important superviser learning:Logistic regression.

Please heeding! 'Logistic regression' is not a regression though its name contains 'regression'. It is a specifical algorithm to transform the expression of binary linear regression. you can get a estimation percentage instead of unlogical regression result.Because, It belongs to classification algorithms.

Maybe this santences is also unintelligible,now let's to describe it step by step.

Why we don't use the linear Regression to solve Binary Regression Problems?

let's see this situation:you are a tumor specialized doctor。In your medical living,you have token p part in operation many times and go through mang size data。From experiment,you can easily judge whether the tumor is benign or maglignant by its size。

Well,you get a binary target value graph when you put the data to a graph

(About axis: "yes or no" denotes as Y ,the size of tumor denotes as X)

In this graph,yep,we can use linear model to regress and that is no problem.

In general,we should set a threshold(communly 0.5 in this binary question).If the prediction value exceeds threshold,declares malignant。If the prediction value is less then threshold,declares benign。

So,get a linear model

When I get a newly data and perdict a result "0.7",I can annource that this tumor is malignant......

But in fact,this tumor is benign.

This is a unlogical error ! We can say "a malignant tumor with 70% probability",but not "0.7 tumor".We want to get a more scientifical and reasonable result,not just a calm num。

Based on this,logistic regression can transform the pure number result to a estimation result。"It has 70% probability to assert this tumor is malignant。" This sentance is logical,in my view。

How to start logistic regression?

Before starting,I must tell you Logistic regression is not regression but classification algorithm.It can be regard as a specialized method what is used to logically solve binary linear regression.

In this method , we induce a specialized function called 'sigmoid'

In this situcation,z=wx+b

so,we can get and a new graph.

sigmoid function is a very useful function,the curve line is naturally divdied into two parts by the point 0 and threshold 0.5.And the output is limited in 0 to 1.

The output of this model means the probability of "yes"(denote as f(x)=p(1),you must (记住) it!)

For example, If f(x)=0.99,we can say "It has 99% probability to judge a malignant tumor".Even if the yi(real situation),we still consider this prediction estimation reasonably.

Loss function:

In regression , we evaluate fitting dregees in one point by error function (yi'-yi)

For logistic regression ,error function is not a suitable function to count error or loss.There is a lot of local minima that you may get stuck.

So we induce a new notion : loss Function,to evaluate the sacle of loss in one point

(Notice: In the behind, f(x) is equals to g(z))

why we define this odd function? The answer is more reasonable

I set a example: when the real situation is "yes",but the f(x)->0

That means "We judge that it is absolutly a benign tumor,however, it is no",and Loss will pursue 1 according to this function, signfiting this fit operation is uncorrect.If you are interested in other situations,you can draw a graph or try in open lab.

If the prediction value settles near to real result, the loss will bacome small and reasonable.

Cost Function:

In linear regression ,we use error function to accumlate a cost value.Now we change it into loss function.

As the fact, The definition of loss cost function is equals to error function

so ,we can unfold it:

conventent to count? Maybe......

Gradient descend:

only need "simultaneous update"

the scale of fit

so,there are there situation

1.Underfit: don't fit the training set wall

2.no name,no error

3.overfit:extremely well.....we don't think it is a good fitting

we focus on the 3-rd situation:

overtraining make a well but high varience。

we have three method to fix the overfit:

(1)collect more data to train a reasonable model

(2)only select main features(substract some feature)

(3)reduce the size of parameter

(3) is a usual method consist of some operation such as regularization, and penlize

regularization, and penlize

To make a model low variance, we must reduce some parameter.

The operation of reducing is "penlize", The entire process is regularization.

In fact,the method we used is called "L2 regularization".Its target is reducing the size of some parameter. "Penlize" is a technolegical term meaning a reduce paramter.

For example,If Iwant to reduce parameter w1,we can do this in iterating process.At the end of loss or error function,we add a item ""

so in iterating function:, this make a effensive cut in w1.

But in usual,we don't know what para should be penlized,so we decide to pandize all parameters.

At the end of loss or errorfunction,we add a item

to maintain a proportional scale for each parameter."

相关推荐
AI_gurubar2 小时前
大模型教机器人叠衣服:2025年”语言理解+多模态融合“的智能新篇
人工智能·机器人
XINVRY-FPGA3 小时前
EPM240T100I5N Altera FPGA MAX II CPLD
人工智能·嵌入式硬件·fpga开发·硬件工程·dsp开发·射频工程·fpga
HuggingFace4 小时前
开源开发者须知:欧盟《人工智能法案》对通用人工智能模型的最新要求
人工智能
媒体人8885 小时前
GEO 优化专家孟庆涛:技术破壁者重构 AI 时代搜索逻辑
大数据·人工智能
小菜AI科技5 小时前
Windsurf 评测:这款 人工智能 IDE 是你需要的颠覆性工具吗?
人工智能
RaymondZhao345 小时前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
zhangfeng11336 小时前
DBSCAN算法详解和参数优化,基于密度的空间聚类算法,特别擅长处理不规则形状的聚类和噪声数据
算法·机器学习·聚类
yzx9910136 小时前
小程序开发APP
开发语言·人工智能·python·yolo
AKAMAI6 小时前
通过自动化本地计算磁盘与块存储卷加密保护数据安全
人工智能·云计算
无规则ai7 小时前
动手学深度学习(pytorch版):第四章节—多层感知机(5)权重衰减
人工智能·pytorch·python·深度学习