时序预测 | MATLAB实现CNN-BiGRU-Attention时间序列预测

时序预测 | MATLAB实现CNN-BiGRU-Attention时间序列预测

目录

预测效果








基本介绍

MATLAB实现CNN-BiGRU-Attention时间序列预测,CNN-BiGRU-Attention结合注意力机制时间序列预测。

模型描述

Matlab实现CNN-BiGRU-Attention时间序列预测

1.data为数据集,格式为excel,单变量时间序列预测;

2.CNN_BiGRU_AttentionTS.m为主程序文件,运行即可;

3.命令窗口输出R2、MAE、MAPE、MSE和MBE;

注意程序和数据放在一个文件夹,运行环境为Matlab2021b及以上。
注意程序和数据放在一个文件夹,运行环境为Matlab2021b及以上。

4.注意力机制模块:

SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。


程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复MATLAB实现CNN-BiGRU-Attention时间序列预测获取。
clike 复制代码
 
        gruLayer(32,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
        dropoutLayer(0.25,'Name','drop2')
        % 全连接层
        fullyConnectedLayer(numResponses,'Name','fc')
        regressionLayer('Name','output')    ];

    layers = layerGraph(layers);
    layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 训练选项
if gpuDeviceCount>0
    mydevice = 'gpu';
else
    mydevice = 'cpu';
end
    options = trainingOptions('adam', ...
        'MaxEpochs',MaxEpochs, ...
        'MiniBatchSize',MiniBatchSize, ...
        'GradientThreshold',1, ...
        'InitialLearnRate',learningrate, ...
        'LearnRateSchedule','piecewise', ...
        'LearnRateDropPeriod',56, ...
        'LearnRateDropFactor',0.25, ...
        'L2Regularization',1e-3,...
        'GradientDecayFactor',0.95,...
        'Verbose',false, ...
        'Shuffle',"every-epoch",...
        'ExecutionEnvironment',mydevice,...
        'Plots','training-progress');
%% 模型训练
rng(0);
net = trainNetwork(XrTrain,YrTrain,layers,options);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试数据预测
% 测试集预测
YPred = predict(net,XrTest,"ExecutionEnvironment",mydevice,"MiniBatchSize",numFeatures);
YPred = YPred';
% 数据反归一化
YPred = sig.*YPred + mu;
YTest = sig.*YTest + mu;
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

参考资料

[1] http://t.csdn.cn/pCWSp

[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501

[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
阡之尘埃4 天前
Python数据分析案例70——基于神经网络的时间序列预测(滞后性的效果,预测中存在的问题)
python·神经网络·数据分析·数据可视化·循环神经网络·时间序列预测
机器学习之心6 天前
WOA-CNN-GRU-Attention、CNN-GRU-Attention、WOA-CNN-GRU、CNN-GRU四模型对比多变量时序预测
attention·cnn-gru·woa-cnn-gru·四模型对比多变量时序预测
机器学习之心22 天前
回归预测 | MATLAB实现CNN-BiLSTM-Attention多输入单输出回归预测
回归·多输入单输出回归预测·attention·cnn-bilstm
简简单单做算法23 天前
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
matlab·cnn·时间序列预测·tcn·时间卷积神经网络·ga遗传优化·ga-tcn
软件算法开发1 个月前
基于遗传优化ELM网络的时间序列预测算法matlab仿真
算法·matlab·时间序列预测·elm·ga-elm
Eshin_Ye1 个月前
transformer学习笔记-自注意力机制(1)
笔记·学习·transformer·attention·注意力机制
YangJZ_ByteMaster1 个月前
PETRv2: A Unified Framework for 3D Perception from Multi-Camera Images
人工智能·深度学习·3d·transformer·attention
机器学习之心1 个月前
SABO-CNN-BiGRU-Attention减法优化器优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比
时间序列预测·sabo-cnn-bigru·减法优化器优化·卷积神经网络双向门控循环单元
机器学习之心2 个月前
顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab)
人工智能·深度学习·回归·多输入单输出回归预测·attention·ooa-bitcn-bigru
FranzLiszt18472 个月前
时间序列预测——周期性解藕框架(PDF)
pdf·时间序列预测·patchtst