分类预测 | Matlab实现CNN-LSTM-Attention高光谱数据分类

分类预测 | Matlab实现CNN-LSTM-Attention高光谱数据分类

目录

分类效果



功能概述

代码功能

该MATLAB代码实现了一个结合CNN、LSTM和注意力机制的高光谱数据分类模型,核心功能如下:

数据预处理

固定划分训练集(前705条)和测试集

特征归一化(mapminmax到[-1,1]区间)

数据重塑为LSTM所需的序列格式(num_dim×1×1的单元数组)

混合模型架构

核心模块

CNN模块:2个卷积层(32/64个滤波器)+ BN + ReLU + 最大池化

LSTM+Attention:128单元LSTM → 多头自注意力层(4头,16键维度)→ Dropout(0.3)

分类头:全连接层 + Softmax

训练与评估

优化器:Adam(初始LR=0.001,分段衰减)

正则化:L2(0.001) + Dropout

评估指标:准确率 + 混淆矩阵 + 预测对比图

特征可视化:t-SNE降维(优化perplexity/lr)

创新可视化

注意力层特征提取 → PCA(50) → t-SNE(2D)

参数网格搜索(perplexity=195, lr=270)

综合评分 = 0.7×轮廓系数 + 0.3×中心聚集度


技术亮点

混合架构优势

CNN提取局部空间特征 → LSTM捕获时序依赖 → 注意力聚焦关键波段

防过拟合设计

Dropout(0.3) + L2正则化 + 早停机制(验证集监控)

可视化创新

动态参数优化:自动选择最佳t-SNE参数组合

综合评分指标:结合聚类质量(轮廓系数)和特征紧密度(中心聚集)

工程实践

数据泄露防护:使用训练集归一化参数处理测试集

可重复性:rng(0)固定随机种子

高效特征提取:activations()直接获取注意力层输出

高光谱数据预处理

MSC (Multiplicative Scatter Correction) 是高光谱数据预处理的核心技术(Matlab代码不含此功能),主要用于消除光散射效应:

程序设计

  • 完整程序和数据私信博主回复Matlab实现CNN-LSTM-Attention高光谱数据分类
clike 复制代码
.rtcContent { padding: 30px; } .lineNode {font-size: 10pt; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-style: normal; font-weight: normal; }
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
rng('default');
%% 导入数据
res = xlsread('data.xlsx'); 
.rtcContent { padding: 30px; } .lineNode {font-size: 10pt; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-style: normal; font-weight: normal; }
%% 网络架构
layers = [
    sequenceInputLayer([num_dim 1 1], 'Name','input')
    sequenceFoldingLayer('Name','fold')

    % ============== CNN模块 ==============
    convolution2dLayer([3 1],32, 'Padding','same', 'Name','conv1')
    batchNormalizationLayer('Name','bn1')
    reluLayer('Name','relu1')
    maxPooling2dLayer([2 1], 'Padding','same', 'Name','pool1')

    convolution2dLayer([3 1],64, 'Padding','same', 'Name','conv2')
    batchNormalizationLayer('Name','bn2')
    reluLayer('Name','relu2')
    maxPooling2dLayer([2 1], 'Padding','same', 'Name','pool2')
    % ====================================

    sequenceUnfoldingLayer('Name','unfold')
    flattenLayer('Name','flatten')

    % ========== LSTM+注意力模块 ==========
    lstmLayer(128, 'OutputMode','last', 'Name','lstm')  
    selfAttentionLayer(4,16, 'Name','attention')       
    dropoutLayer(0.3, 'Name','dropout')
    % ====================================, x, refValue_norm); % 调用SHAP函数
end

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
rit84324993 小时前
MATLAB中Teager能量算子提取与解调信号的实现
开发语言·matlab
我找到地球的支点啦3 小时前
通信扩展——扩频技术(超级详细,附带Matlab代码)
开发语言·matlab
Dev7z15 小时前
基于 MATLAB 的铣削切削力建模与仿真
开发语言·matlab
fengfuyao98518 小时前
基于MATLAB的表面织构油润滑轴承故障频率提取(改进VMD算法)
人工智能·算法·matlab
机器学习之心18 小时前
基于随机森林模型的轴承剩余寿命预测MATLAB实现!
算法·随机森林·matlab
rit843249920 小时前
基于MATLAB的环境障碍模型构建与蚁群算法路径规划实现
开发语言·算法·matlab
hoiii18720 小时前
MATLAB SGM(半全局匹配)算法实现
前端·算法·matlab
yong999021 小时前
MATLAB面波频散曲线反演程序
开发语言·算法·matlab
yugi9878381 天前
基于MATLAB的一键式EMD、EEMD、CEEMD和SSA信号去噪实现
开发语言·matlab·信号去噪
youcans_1 天前
【STM32-MBD】(15)Simulink 模型开发之三相互补 PWM
stm32·单片机·嵌入式硬件·matlab·foc