c8t6和mini的程序不可以互通在freertos的情况下,配置差别很大,所以提前选好
pwm部分:
这部分包括了pwm的配置以及电机驱动
cpp
#include "timer.h"
#include "led.h"
#include "usart.h"
#include "malloc.h"
#include "string.h"
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "pwm.h"
//TIM3 PWM部分初始化
//PWM输出初始化
//arr:自动重装值
//psc:时钟预分频数
void TIM1_PWM_Init(u16 arr,u16 psc)
{
GPIO_InitTypeDef GPIO_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);//
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA , ENABLE); //使能GPIO外设时钟使能
//设置该引脚为复用输出功能,输出TIM1 CH1 CH4的PWM脉冲波形
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8|GPIO_Pin_11; //TIM_CH1 //TIM_CH4
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值
TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值 不分频
TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIM向上计数模式
TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式1
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能
TIM_OCInitStructure.TIM_Pulse = 0; //设置待装入捕获比较寄存器的脉冲值
TIM_OCInitStructure.TIM_Pulse = arr >> 1;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性高
TIM_OC1Init(TIM1, &TIM_OCInitStructure); //根据TIM_OCInitStruct中指定的参数初始化外设TIMx
TIM_OC4Init(TIM1, &TIM_OCInitStructure); //根据TIM_OCInitStruct中指定的参数初始化外设TIMx
TIM_CtrlPWMOutputs(TIM1,ENABLE); //MOE 主输出使能
TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable); //CH1预装载使能
TIM_OC4PreloadConfig(TIM1, TIM_OCPreload_Enable); //CH4预装载使能
TIM_ARRPreloadConfig(TIM1, ENABLE); //使能TIMx在ARR上的预装载寄存器
TIM_Cmd(TIM1, ENABLE); //使能TIM1
}
void Motor_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); //使能PB端口时钟
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12|GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15; //端口配置
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50MHZ
GPIO_Init(GPIOB, &GPIO_InitStructure); //根据设定参数初始化GPIOB
AIN1=0,AIN2=0;
BIN1=0,BIN1=0;
}
void go(void)
{
AIN1 = 0;
AIN2 = 1;
BIN1 = 0;
BIN2 = 1;
}
void left(void)
{
AIN1 = 1;
AIN2 = 1;
BIN1 = 0;
BIN2 = 1;
}
void right(void)
{
AIN1 = 0;
AIN2 = 1;
BIN1 = 1;
BIN2 = 1;
}
void stop(void)
{
AIN1 = 1;
AIN2 = 1;
BIN1 = 1;
BIN2 = 1;
}
pwm.h
cpp
#ifndef __PWM_H
#define __PWM_H
#include "stdio.h"
#include "sys.h"
#define AIN2 PBout(15)
#define AIN1 PBout(14)
#define BIN1 PBout(13)
#define BIN2 PBout(12)
#define PWMA TIM1->CCR1 //PA8
#define PWMB TIM1->CCR4 //PA11
void TIM1_PWM_Init(u16 arr,u16 psc);
void Motor_Init(void);
void go(void);
void left(void);
void right(void);
void stop(void);
#endif
串口部分:
使用了串口1和串口2,串口1用来调试信息,串口2用来接收蓝牙信息
cpp
#include "sys.h"
#include "usart.h"
#include "string.h"
//
//如果使用ucos,则包括下面的头文件即可.
#if SYSTEM_SUPPORT_OS
#include "FreeRTOS.h" //FreeRTOS使用
#include "task.h"
#include "semphr.h"
#endif
//
//加入以下代码,支持printf函数,而不需要选择use MicroLIB
#if 1
#pragma import(__use_no_semihosting)
//标准库需要的支持函数
struct __FILE
{
int handle;
};
FILE __stdout;
//定义_sys_exit()以避免使用半主机模式
void _sys_exit(int x)
{
x = x;
}
//重定义fputc函数
int fputc(int ch, FILE *f)
{
while((USART1->SR&0X40)==0);//循环发送,直到发送完毕
USART1->DR = (u8) ch;
return ch;
}
#endif
//串口1中断服务程序
//注意,读取USARTx->SR能避免莫名其妙的错误
u8 USART_RX_BUF1[USART_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节.
//接收状态
//bit15, 接收完成标志
//bit14, 接收到0x0d
//bit13~0, 接收到的有效字节数目
u16 USART_RX_STA1=0; //接收状态标记
void uart_init(u32 bound)
{
//GPIO端口设置
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE); //使能USART1,GPIOA时钟
//USART1_TX GPIOA.9
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出
GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.9
//USART1_RX GPIOA.10初始化
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;//PA10
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入
GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.10
//Usart1 NVIC 配置
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=7;//抢占优先级3
NVIC_InitStructure.NVIC_IRQChannelSubPriority =0; //子优先级3
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能
NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器
//USART 初始化设置
USART_InitStructure.USART_BaudRate = bound;//串口波特率
USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式
USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位
USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式
USART_Init(USART1, &USART_InitStructure); //初始化串口1
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启串口接受中断
USART_Cmd(USART1, ENABLE); //使能串口1
}
extern SemaphoreHandle_t BinarySemaphore1; //二值信号量句柄
void USART1_IRQHandler(void) //串口1中断服务程序
{
u8 Res;
BaseType_t xHigherPriorityTaskWoken;
if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //接收中断(接收到的数据必须是0x0d 0x0a结尾)
{
Res =USART_ReceiveData(USART1); //读取接收到的数据
if((USART_RX_STA1&0x8000)==0)//接收未完成
{
if(USART_RX_STA1&0x4000)//接收到了0x0d
{
if(Res!=0x0a)USART_RX_STA1=0;//接收错误,重新开始
else USART_RX_STA1|=0x8000; //接收完成了
}
else //还没收到0X0D
{
if(Res==0x0d)USART_RX_STA1|=0x4000;
else
{
USART_RX_BUF1[USART_RX_STA1&0X3FFF]=Res ;
USART_RX_STA1++;
if(USART_RX_STA1>(USART_REC_LEN-1))USART_RX_STA1=0;//接收数据错误,重新开始接收
}
}
}
}
//释放二值信号量
if((USART_RX_STA1&0x8000)&&(BinarySemaphore1!=NULL))//接收到数据,并且二值信号量有效
{
xSemaphoreGiveFromISR(BinarySemaphore1,&xHigherPriorityTaskWoken); //释放二值信号量
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);//如果需要的话进行一次任务切换
}
}
u16 USART_RX_STA2=0; //接收状态标记
u8 USART_RX_BUF2[USART_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节.
void USART2_Initialise( u32 bound )
{
GPIO_InitTypeDef GPIO_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
USART_InitTypeDef USART_InitStructure;
/* Enable the USART2 Pins Software Remapping */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_AFIO, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2|RCC_APB2Periph_AFIO, ENABLE);
/* Configure USART2 Rx (PA.03) as input floating */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* Configure USART2 Tx (PA.02) as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* Enable the USART2 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 8;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
USART_InitStructure.USART_BaudRate = bound;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART2, &USART_InitStructure);
USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);
/* Enable USART2 */
USART_Cmd(USART2, ENABLE);
}
extern SemaphoreHandle_t BinarySemaphore2; //二值信号量句柄
void USART2_IRQHandler(void)
{
u8 Res;
BaseType_t xHigherPriorityTaskWoken;
if(USART_GetITStatus(USART2, USART_IT_RXNE) != RESET) //接收中断(接收到的数据必须是0x0d 0x0a结尾)
{
Res =USART_ReceiveData(USART2); //读取接收到的数据
if((USART_RX_STA2&0x8000)==0)//接收未完成
{
if(USART_RX_STA2&0x4000)//接收到了0x0d
{
if(Res!=0x0a)USART_RX_STA2=0;//接收错误,重新开始
else USART_RX_STA2|=0x8000; //接收完成了
}
else //还没收到0X0D
{
if(Res==0x0d)USART_RX_STA2|=0x4000;
else
{
USART_RX_BUF2[USART_RX_STA2&0X3FFF]=Res ;
USART_RX_STA2++;
if(USART_RX_STA2>(USART_REC_LEN-1))USART_RX_STA2=0;//接收数据错误,重新开始接收
}
}
}
}
//释放二值信号量
if((USART_RX_STA2&0x8000)&&(BinarySemaphore2!=NULL))//接收到数据,并且二值信号量有效
{
xSemaphoreGiveFromISR(BinarySemaphore2,&xHigherPriorityTaskWoken); //释放二值信号量
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);//如果需要的话进行一次任务切换
}
}
主函数部分:
声明两个二值信号量,去分别判断两个串口是否有信息,创建三个任务,串口1,串口2,以及运动部分的任务。
配置任务的句柄,优先级等基本信息:
cpp
//任务优先级
#define START_TASK_PRIO 1
//任务堆栈大小
#define START_STK_SIZE 256
//任务句柄
TaskHandle_t StartTask_Handler;
//任务函数
void start_task(void *pvParameters);
//任务优先级
#define TASK1_TASK_PRIO 2
//任务堆栈大小
#define TASK1_STK_SIZE 256
//任务句柄
TaskHandle_t Task1Task_Handler;
//任务函数
void task1_task(void *pvParameters);
//任务优先级
#define DATAPROCESS_TASK_PRIO 5
//任务堆栈大小
#define DATAPROCESS_STK_SIZE 128
//任务句柄
TaskHandle_t DataProcess_Handler;
//任务函数
void DataProcess_task(void *pvParameters);
//任务优先级
#define LANYA_TASK_PRIO 4
//任务堆栈大小
#define DATAPROCESS_STK_SIZE 128
//任务句柄
TaskHandle_t Lanya_Task_Handler;
//任务函数
void Lanya_task(void *pvParameters);
//任务优先级
#define YUNDONG_TASK_PRIO 3
//任务堆栈大小
#define YUNDONG_SIZE 256
//任务句柄
TaskHandle_t Yundong_Task_Handler;
//任务函数
void Yundong_Task(void *pvParameters);
cpp
//二值信号量句柄
SemaphoreHandle_t BinarySemaphore1; //二值信号量句柄1
SemaphoreHandle_t BinarySemaphore2; //二值信号量句柄2
核心部分:
cpp
int main(void)
{
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);//设置系统中断优先级分组4
delay_init(); //延时函数初始化
uart_init(115200); //初始化串口
USART2_Initialise(9600); //初始化串口
LED_Init(); //初始化LED
KEY_Init(); //初始化按键
mem_init(); //初始化内部内存池
TIM1_PWM_Init(899,0);
Motor_Init();
//创建开始任务
xTaskCreate((TaskFunction_t )start_task, //任务函数
(const char* )"start_task", //任务名称
(uint16_t )START_STK_SIZE, //任务堆栈大小
(void* )NULL, //传递给任务函数的参数
(UBaseType_t )START_TASK_PRIO, //任务优先级
(TaskHandle_t* )&StartTask_Handler); //任务句柄
vTaskStartScheduler(); //开启任务调度
}
//开始任务任务函数
void start_task(void *pvParameters)
{
taskENTER_CRITICAL(); //进入临界区
//创建二值信号量
BinarySemaphore1=xSemaphoreCreateBinary();
BinarySemaphore2=xSemaphoreCreateBinary();
//创建TASK1任务
xTaskCreate((TaskFunction_t )task1_task,
(const char* )"task1_task",
(uint16_t )TASK1_STK_SIZE,
(void* )NULL,
(UBaseType_t )TASK1_TASK_PRIO,
(TaskHandle_t* )&Task1Task_Handler);
//创建串口任务
xTaskCreate((TaskFunction_t )DataProcess_task,
(const char* )"keyprocess_task",
(uint16_t )DATAPROCESS_STK_SIZE,
(void* )NULL,
(UBaseType_t )DATAPROCESS_TASK_PRIO,
(TaskHandle_t* )&DataProcess_Handler);
//创建蓝牙任务
xTaskCreate((TaskFunction_t )Lanya_task,
(const char* )"lanya_task",
(uint16_t )DATAPROCESS_STK_SIZE,
(void* )NULL,
(UBaseType_t )LANYA_TASK_PRIO,
(TaskHandle_t* )&Lanya_Task_Handler);
//创建运动任务
xTaskCreate((TaskFunction_t )Yundong_Task,
(const char* )"yundong_task",
(uint16_t )YUNDONG_SIZE,
(void* )NULL,
(UBaseType_t )YUNDONG_TASK_PRIO,
(TaskHandle_t* )&Yundong_Task_Handler);
vTaskDelete(StartTask_Handler); //删除开始任务
taskEXIT_CRITICAL(); //退出临界区
}
//task1任务函数
void task1_task(void *pvParameters)
{
while(1)
{
LED0=!LED0;
vTaskDelay(500); //延时500ms,也就是500个时钟节拍
}
}
//DataProcess_task函数
void DataProcess_task(void *pvParameters)
{
u8 len=0;
BaseType_t err=pdFALSE;
u8 *CommandStr;
while(1)
{
printf("QAQ\r\n");
err=xSemaphoreTake(BinarySemaphore1,portMAX_DELAY); //获取信号量
if(err==pdTRUE) //获取信号量成功
{
len=USART_RX_STA1&0x3fff; //得到此次接收到的数据长度
CommandStr=mymalloc(len+1); //申请内存
sprintf((char*)CommandStr,"%s",USART_RX_BUF1);
CommandStr[len]='\0'; //加上字符串结尾符号
printf("%s\r\n",CommandStr);
USART_RX_STA1=0;
memset(USART_RX_BUF1,0,USART_REC_LEN); //串口接收缓冲区清零
myfree(CommandStr); //释放内存
}
else
{
printf("无效的命令,请重新输入!!\r\n");
}
}
}
void Lanya_task(void *pvParameters)
{
u8 len=0;
BaseType_t err=pdFALSE;
u8 *CommandStr;
while(1)
{
err=xSemaphoreTake(BinarySemaphore2,portMAX_DELAY); //获取信号量
if(err==pdTRUE) //获取信号量成功
{
len=USART_RX_STA2&0x3fff; //得到此次接收到的数据长度
printf("%s\r\n",USART_RX_BUF2);
if(strcmp(USART_RX_BUF2,"1") == 0)
value = 1;
else if(strcmp(USART_RX_BUF2,"2") == 0)
value = 2;
else if(strcmp(USART_RX_BUF2,"3") == 0)
value = 3;
else if(strcmp(USART_RX_BUF2,"4") == 0)
value = 4;
USART_RX_STA2=0;
memset(USART_RX_BUF2,0,USART_REC_LEN); //串口接收缓冲区清零
myfree(CommandStr); //释放内存
}
}
}
void Yundong_Task(void *pvParameters)
{
while(1)
{
printf("数据是:%d\r\n",value);
if(value == 1)
{
go();
printf("1");
}
else if(value == 2)
{
left();
printf("2");
}
else if(value == 3)
{
right();
printf("3");
}
else if(value == 4)
{
stop();
printf("4");
}
value = 0;
vTaskDelay(50);
}
}
我遇到的几个问题和总结:
1.当我在运动任务中不加入延时函数,即使这个任务的优先级最低,也还是会卡死,整个程序不执行,我目前还不是很清楚原因。猜测可能是在while循环出不去,完全占用了CPU,加入延时,可是将任务转为阻塞态,从而解放CPU。【记得延时】
2.任何东西配置完记得在int main函数里面初始化,不然也会卡死
3.我的串口1和2必须是115200和9600,串口才会有反应,目前不知道为啥,希望看到的大佬帮我解答一些。