Python-OpenCV中的图像处理-视频分析

Python-OpenCV中的图像处理-视频分析

视频分析

学习使用 Meanshift 和 Camshift 算法在视频中找到并跟踪目标对象:

Meanshift算法

Meanshift 算法的基本原理是和很简单的。假设我们有一堆点(比如直方

图反向投影得到的点),和一个小的圆形窗口,我们要完成的任务就是将这个窗

口移动到最大灰度密度处(或者是点最多的地方)。如下图所示:

初始窗口是蓝色的"C1",它的圆心为蓝色方框"C1_o",而窗口中所有点质心却是"C1_r"(小的蓝色圆圈),很明显圆心和点的质心没有重合。所以移动圆心 C1_o 到质心 C1_r,这样我们就得到了一个新的窗口。这时又可以找到新窗口内所有点的质心,大多数情况下还是不重合的,所以重复上面的操作:将新窗口的中心移动到新的质心。就这样不停的迭代操作直到窗口的中心和其所包含点的质心重合为止(或者有一点小误差)。按照这样的操作我们的窗口最终会落在像素值(和)最大的地方。如上图所示"C2"是窗口的最后位址,我们可以看出来这个窗口中的像素点最多。

要在 OpenCV 中使用 Meanshift 算法首先我们要对目标对象进行设置,

计算目标对象的直方图,这样在执行 meanshift 算法时我们就可以将目标对

象反向投影到每一帧中去了。另外我们还需要提供窗口的起始位置。在这里我

们值计算 H( Hue)通道的直方图,同样为了避免低亮度造成的影响,我们使

用函数 cv2.inRange() 将低亮度的值忽略掉。

python 复制代码
import numpy as np
import cv2
from matplotlib import pyplot as plt
# 视频下载地址https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4
cap = cv2.VideoCapture('./resource/opencv/video/slow_traffic_small.mp4')

ret,frame = cap.read()

# setup initial location of window
x, y, w, h = 300, 200, 100, 50 # simply hardcoded the values
track_window = (x, y, w, h)

# set up the ROI for tracking
roi = frame[y:y+h, x:x+w]

hsv_roi = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)

term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1)

while(1):
    ret, frame = cap.read()
    if ret == True:
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        dst = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)

        ret, track_window = cv2.meanShift(dst, track_window, term_crit)

        x,y,w,h = track_window
        img2 = cv2.rectangle(frame, (x,y), (x+w, y+h), 255, 2)

        k = cv2.waitKey(60)&0xFF
        if k == 27:
            break
        else:
            cv2.imshow('img', img2)
    else:
        break

cap.release()
cv2.destroyAllWindows()


Camshift算法

与 Meanshift 基本一样,但是返回的结果是一个带旋转角度的矩形以及这个矩形的参数(被用到下一次迭代过程中)。

python 复制代码
import numpy as np
import cv2
from matplotlib import pyplot as plt
# 视频下载地址https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4
cap = cv2.VideoCapture('./resource/opencv/video/slow_traffic_small.mp4')

# take first frame of the video
ret, frame = cap.read()

# setup initial location of window
x, y, w, h = 300, 200, 100, 50 # simply hardcoded the values
track_window = (x, y, w, h)
# set up the ROI for tracking
roi = frame[y:y+h, x:x+w]
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)
# Setup the termination criteria, either 10 iteration or move by at least 1 pt
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )

while(1):
    ret, frame = cap.read()
    if ret == True:
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)
        # apply camshift to get the new location
        ret, track_window = cv2.CamShift(dst, track_window, term_crit)
        # Draw it on image
        pts = cv2.boxPoints(ret)
        pts = np.int0(pts)
        img2 = cv2.polylines(frame,[pts],True, 255,2)
        k = cv2.waitKey(30) & 0xff
        if k == 27:
            break
        else:
            cv2.imshow('img2',img2)
    else:
        cap.release()
        cv2.destroyAllWindows()


光流

  • 光流的概念以及 Lucas-Kanade 光流法
  • 函数 cv2.calcOpticalFlowPyrLK() 对图像中的特征点进行跟踪
相关推荐
冷雨夜中漫步17 分钟前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
郝学胜-神的一滴37 分钟前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
百锦再40 分钟前
Reactive编程入门:Project Reactor 深度指南
前端·javascript·python·react.js·django·前端框架·reactjs
喵手2 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控
2501_944934732 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
helloworldandy3 小时前
使用Pandas进行数据分析:从数据清洗到可视化
jvm·数据库·python
肖永威4 小时前
macOS环境安装/卸载python实践笔记
笔记·python·macos
TechWJ4 小时前
PyPTO编程范式深度解读:让NPU开发像写Python一样简单
开发语言·python·cann·pypto
枷锁—sha4 小时前
【SRC】SQL注入WAF 绕过应对策略(二)
网络·数据库·python·sql·安全·网络安全
abluckyboy5 小时前
Java 实现求 n 的 n^n 次方的最后一位数字
java·python·算法