R语言生存分析(机器学习)(1)——GBM(梯度提升机)

GBM是一种集成学习算法,它结合了多个弱学习器(通常是决策树)来构建一个强大的预测模型。GBM使用"Boosting"的技术来训练弱学习器,这种技术是一个迭代的过程,每一轮都会关注之前轮次中预测效果较差的样本,以便更专注地对它们进行建模。这有助于逐步减少整体预测误差。

复制代码
#1 清空
rm(list = ls())
gc()
#2 导入包
library("survival")
library("gbm")
help(package="gbm")
#3 拆分训练集和测试集
data<-lung
set.seed(123)
train <- sample(1:nrow(data), round(nrow(data) * 0.70))
train <- data[train, ]
test <- data[-train, ]
#4 建立模型
set.seed(123)
gbm_model <- gbm(Surv(time, status) ~ .,#建模
             distribution = "coxph",#分布
             data = train,#数据
             n.trees = 5000,#树数量
             shrinkage = 0.1,#学习率或步长减少
             interaction.depth = 5,#每棵树的最大深度
             n.minobsinnode = 10,#最小观测次数在树的终末节点
             cv.folds = 10#交叉验证次数
)
plot(gbm_model)#通过"积分"其他变量,绘制所选变量的边际效应。
summary(gbm_model)#绘图,从高到低显示因素的相对重要性
复制代码
#5 预测
best.iter <- gbm.perf(gbm_model, plot.it = TRUE, method = "cv")
pred_train <- predict(gbm_model, train, n.trees = best.iter)
pred_test <- predict(gbm_model, test, n.trees = best.iter)
#6 模型评价
#计算ROC
library(survivalROC)
roc_area <- survivalROC(Stime=train$time,
                        status=train$status,
                        marker =pred_train,
                        predict.time=100,
                        method="KM")
# 计算C-index
Hmisc::rcorr.cens(-pred_train, Surv(train$time, train$status))
Hmisc::rcorr.cens(-pred_test, Surv(test$time, test$status))
#7 计算生存概率
# 计算累积
CH<- basehaz.gbm(train$time, train$status, pred_train, 
                   t.eval = 300, cumulative = TRUE)
exp(-exp(pred_test)*CH)
相关推荐
3DVisionary几秒前
3D-DIC与机器学习协同模拟材料应力-应变本构行为研究
人工智能·机器学习·3d·3d-dic技术 机器学习·应力-应变本构行为·卷积神经网络(ecnn)·数字图像相关法(dic)
神经星星2 分钟前
无需预对齐即可消除批次效应,东京大学团队开发深度学习框架STAIG,揭示肿瘤微环境中的详细基因信息
人工智能·深度学习·机器学习
神经星星3 分钟前
【vLLM 学习】调试技巧
人工智能·机器学习·编程语言
呵呵哒( ̄▽ ̄)"3 分钟前
线性代数:同解(1)
python·线性代数·机器学习
SweetCode8 分钟前
裴蜀定理:整数解的奥秘
数据结构·python·线性代数·算法·机器学习
databook43 分钟前
不平衡样本数据的救星:数据再分配策略
python·机器学习·scikit-learn
补三补四1 小时前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
A林玖2 小时前
【计算机相关学习】R语言
开发语言·学习·r语言
荷包蛋蛋怪2 小时前
【北京化工大学】 神经网络与深度学习 实验6 MATAR图像分类
人工智能·深度学习·神经网络·opencv·机器学习·计算机视觉·分类
Uzuki8 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性