分类预测 | MATLAB实现EVO-CNN多输入分类预测

分类预测 | MATLAB实现EVO-CNN多输入分类预测

目录

预测效果




基本介绍

1.MATLAB实现EVO-CNN多输入分类预测

2.代码说明:量谷优化卷积神经网络的数据分类预测:要求于Matlab 2021版及以上版本。

特点:

多行变量特征输入,优化了学习率、卷积核大小及卷积核个数等,方便增加维度优化其它参数。能量谷优化算法(Energy valley optimizer,EVO)是MahdiAzizi等人于2023年提出的一种新颖的元启发式算法,其灵感来自关于稳定性和不同粒子衰变模式的物理原理。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复 MATLAB实现EVO-CNN多输入分类预测获取。
clike 复制代码
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值

%%  迭代寻优
for i = 1 : maxgen
    for j = 1 : sizepop
        
        % 速度更新
        V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));
        V(j, (V(j, :) > Vmax)) = Vmax;
        V(j, (V(j, :) < Vmin)) = Vmin;
        
        % 种群更新
        pop(j, :) = pop(j, :) + 0.2 * V(j, :);
        pop(j, (pop(j, :) > popmax)) = popmax;
        pop(j, (pop(j, :) < popmin)) = popmin;
        
        % 自适应变异
        pos = unidrnd(numsum);
        if rand > 0.95
            pop(j, pos) = rands(1, 1);
        end
        
        % 适应度值
        fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);

    end
    
    for j = 1 : sizepop

        % 个体最优更新
        if fitness(j) < fitnessgbest(j)
            gbest(j, :) = pop(j, :);
            fitnessgbest(j) = fitness(j);
        end

        % 群体最优更新 
        if fitness(j) < fitnesszbest
            zbest = pop(j, :);
            fitnesszbest = fitness(j);
        end

    end

    BestFit = [BestFit, fitnesszbest];    
end
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130462492

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129679476?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/129659229?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/129653829?spm=1001.2014.3001.5501

相关推荐
大山同学12 小时前
CNN手写数字识别minist
人工智能·神经网络·cnn
西猫雷婶1 天前
CNN卷积计算
人工智能·神经网络·cnn
ARM+FPGA+AI工业主板定制专家3 天前
基于ZYNQ FPGA+AI+ARM 的卷积神经网络加速器设计
人工智能·fpga开发·cnn·无人机·rk3588
C嘎嘎嵌入式开发3 天前
(二) 机器学习之卷积神经网络
人工智能·机器学习·cnn
qq_340474024 天前
0.6 卷积神经网络
人工智能·神经网络·cnn·卷积神经网络
mooooon L6 天前
DAY 41 简单CNN-2025.10.5
人工智能·神经网络·cnn
Hcoco_me7 天前
YOLO入门教程(番外):卷积神经网络—图像卷积
深度学习·yolo·cnn
东方芷兰7 天前
LLM 笔记 —— 02 大语言模型能力评定
人工智能·笔记·python·神经网络·语言模型·自然语言处理·cnn
励志成为糕手10 天前
EfficientNet模型:高效卷积神经网络的革命性突破
人工智能·神经网络·cnn·模型优化·mbconv
星期天要睡觉11 天前
计算机视觉(opencv)——基于 dlib 和 CNN卷积神经网络 的人脸检测
opencv·计算机视觉·cnn