大数据bug-sqoop(二:sqoop同步mysql数据到hive进行字段限制。)

一:sqoop脚本解析。

sql 复制代码
#!/bin/sh
mysqlHost=$1
mysqlUserName=$2
mysqlUserPass=$3
mysqlDbName=$4
sql=$5
split=$6
target=$7
hiveDbName=$8
hiveTbName=$9
partFieldName=${10}
inputDate=${11}
 
echo ${mysqlHost}
echo ${mysqlUserName}
echo ${mysqlUserPass}
echo ${mysqlDbName}
echo ${sql}
echo ${split}
echo ${target}
echo ${hiveDbName}
echo ${hiveTbName}
echo ${partFieldName}
echo ${inputDate}
 
 
sqoop import "-Dorg.apache.sqoop.splitter.allow_text_splitter=true" \
--connect jdbc:mysql://${mysqlHost}/${mysqlDbName}?tinyInt1isBit=false \
--username ${mysqlUserName} \
--password ${mysqlUserPass} \
--query "${sql}" \
--split-by ${split}  \
--target-dir ${target}  \
--hive-overwrite \
--delete-target-dir \
--fields-terminated-by '\t' \
--null-string "" \
--hive-import \
--null-non-string "false" \
--hive-database ${hiveDbName} \
--hive-table ${hiveTbName} \
--hive-drop-import-delims \
--hive-partition-key ${partFieldName} \
--hive-partition-value ${inputDate}
  1. 新增加三个参数
    1. --query "{sql}" \\ 这个参数添加对应表的sql语句。注意结尾必须添加 CONDITIONS ,必须添加where 条件,如果没有where条件,写成where 1=1。案例如下:
      "select id,key_id,key_type,'' as encryption_cert_chain,device_type,account_id_hash,user_identifier,user_id,request_id,device_id,vehicle_id,vehicle_identifier,device_info,device_oem_id,key_data,import_immobilizer_token_request_data,friendly_name,digital_key_status,digital_key_status_in_vehicle,digital_key_status_in_device,key_valid_from,key_valid_to,shared_keys,shareable_keys,manufacturer,state_in_vehicle,state_in_device,key_status_for_vehicle,'' as device_enc_public_key,'' as digital_key_public_key,'' as digital_key_cert,'' as instance_ca_cert,entitlement,rights,slot_id,protocol_type,group_identifier,verify_result,deleted,create_time,update_time,fsn,action_type from kts_key where 1=1 and \$CONDITIONS"

    2. --split-by ${split} \ 这个参数是切分数据的分割字段,一般来讲是mysql的主键。

    3. --target-dir ${target} \ 这个参数指一个路径。可以随意指定一个目录,

二:命令。

sql 复制代码
  sh  test.sh 99.99.99.99:3306 \
bigdata 123222 ssss  "select  id,key_id,key_type,'' as encryption_cert_chain,device_type,account_id_hash,user_identifier,user_id,request_id,device_id,vehicle_id,vehicle_identifier,device_info,device_oem_id,key_data,import_immobilizer_token_request_data,friendly_name,digital_key_status,digital_key_status_in_vehicle,digital_key_status_in_device,key_valid_from,key_valid_to,shared_keys,shareable_keys,manufacturer,state_in_vehicle,state_in_device,key_status_for_vehicle,'' as device_enc_public_key,'' as digital_key_public_key,'' as digital_key_cert,'' as instance_ca_cert,entitlement,rights,slot_id,protocol_type,group_identifier,verify_result,deleted,create_time,update_time,fsn,action_type from kts_key where 1=1 and  \$CONDITIONS"  id "/tmp/test" ods ods_okp p_dt 2023-08-15
相关推荐
北邮-吴怀玉3 小时前
2.2.1.1 大数据方法论与实践指南-公司产品&功能命名管理
大数据·数据治理
码龄3年 审核中8 小时前
说说SSH的端口转发
大数据·运维·ssh
SeaTunnel8 小时前
(二)从分层架构到数据湖仓架构:数据仓库分层下的技术架构与举例
大数据·数据仓库·数据分析·数据同步
数据库安全9 小时前
牛品推荐|分类分级效能飞跃:美创智能数据安全分类分级平台
大数据·人工智能·分类
数据库安全9 小时前
《金融电子化》:构建金融韧性运行安全体系:从灾备管理到主动防御新范式
大数据·安全·金融
GG向前冲10 小时前
【大数据】Spark MLlib 机器学习流水线搭建
大数据·机器学习·spark-ml
我要升天!11 小时前
Git的原理与使用 -- 基础操作
大数据·服务器·git·elasticsearch
阿里云大数据AI技术12 小时前
云栖实录 | 实时计算 Flink 全新升级 - 全栈流处理平台助力实时智能
大数据·人工智能
鲜枣课堂13 小时前
重新安全定义,IMS算网融合加速企业专网AI+场景落地
大数据·人工智能·安全
阿里云大数据AI技术13 小时前
云栖实录 | 驰骋在数据洪流上:Flink+Hologres驱动零跑科技实时计算的应用与实践
大数据·flink