大数据bug-sqoop(二:sqoop同步mysql数据到hive进行字段限制。)

一:sqoop脚本解析。

sql 复制代码
#!/bin/sh
mysqlHost=$1
mysqlUserName=$2
mysqlUserPass=$3
mysqlDbName=$4
sql=$5
split=$6
target=$7
hiveDbName=$8
hiveTbName=$9
partFieldName=${10}
inputDate=${11}
 
echo ${mysqlHost}
echo ${mysqlUserName}
echo ${mysqlUserPass}
echo ${mysqlDbName}
echo ${sql}
echo ${split}
echo ${target}
echo ${hiveDbName}
echo ${hiveTbName}
echo ${partFieldName}
echo ${inputDate}
 
 
sqoop import "-Dorg.apache.sqoop.splitter.allow_text_splitter=true" \
--connect jdbc:mysql://${mysqlHost}/${mysqlDbName}?tinyInt1isBit=false \
--username ${mysqlUserName} \
--password ${mysqlUserPass} \
--query "${sql}" \
--split-by ${split}  \
--target-dir ${target}  \
--hive-overwrite \
--delete-target-dir \
--fields-terminated-by '\t' \
--null-string "" \
--hive-import \
--null-non-string "false" \
--hive-database ${hiveDbName} \
--hive-table ${hiveTbName} \
--hive-drop-import-delims \
--hive-partition-key ${partFieldName} \
--hive-partition-value ${inputDate}
  1. 新增加三个参数
    1. --query "{sql}" \\ 这个参数添加对应表的sql语句。注意结尾必须添加 CONDITIONS ,必须添加where 条件,如果没有where条件,写成where 1=1。案例如下:
      "select id,key_id,key_type,'' as encryption_cert_chain,device_type,account_id_hash,user_identifier,user_id,request_id,device_id,vehicle_id,vehicle_identifier,device_info,device_oem_id,key_data,import_immobilizer_token_request_data,friendly_name,digital_key_status,digital_key_status_in_vehicle,digital_key_status_in_device,key_valid_from,key_valid_to,shared_keys,shareable_keys,manufacturer,state_in_vehicle,state_in_device,key_status_for_vehicle,'' as device_enc_public_key,'' as digital_key_public_key,'' as digital_key_cert,'' as instance_ca_cert,entitlement,rights,slot_id,protocol_type,group_identifier,verify_result,deleted,create_time,update_time,fsn,action_type from kts_key where 1=1 and \$CONDITIONS"

    2. --split-by ${split} \ 这个参数是切分数据的分割字段,一般来讲是mysql的主键。

    3. --target-dir ${target} \ 这个参数指一个路径。可以随意指定一个目录,

二:命令。

sql 复制代码
  sh  test.sh 99.99.99.99:3306 \
bigdata 123222 ssss  "select  id,key_id,key_type,'' as encryption_cert_chain,device_type,account_id_hash,user_identifier,user_id,request_id,device_id,vehicle_id,vehicle_identifier,device_info,device_oem_id,key_data,import_immobilizer_token_request_data,friendly_name,digital_key_status,digital_key_status_in_vehicle,digital_key_status_in_device,key_valid_from,key_valid_to,shared_keys,shareable_keys,manufacturer,state_in_vehicle,state_in_device,key_status_for_vehicle,'' as device_enc_public_key,'' as digital_key_public_key,'' as digital_key_cert,'' as instance_ca_cert,entitlement,rights,slot_id,protocol_type,group_identifier,verify_result,deleted,create_time,update_time,fsn,action_type from kts_key where 1=1 and  \$CONDITIONS"  id "/tmp/test" ods ods_okp p_dt 2023-08-15
相关推荐
Lx35238 分钟前
Hadoop日志分析实战:快速定位问题的技巧
大数据·hadoop
喂完待续4 小时前
【Tech Arch】Hive技术解析:大数据仓库的SQL桥梁
大数据·数据仓库·hive·hadoop·sql·apache
SelectDB4 小时前
5000+ 中大型企业首选的 Doris,在稳定性的提升上究竟花了多大的功夫?
大数据·数据库·apache
最初的↘那颗心4 小时前
Flink Stream API 源码走读 - window 和 sum
大数据·hadoop·flink·源码·实时计算·窗口函数
Yusei_05236 小时前
迅速掌握Git通用指令
大数据·git·elasticsearch
一只栖枝12 小时前
华为 HCIE 大数据认证中 Linux 命令行的运用及价值
大数据·linux·运维·华为·华为认证·hcie·it
喂完待续17 小时前
Apache Hudi:数据湖的实时革命
大数据·数据仓库·分布式·架构·apache·数据库架构
青云交17 小时前
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵治理与出行效率提升中的应用(398)
java·大数据·flink·大数据可视化·拥堵预测·城市交通治理·实时热力图
phantom_11119 小时前
Cursor 分析 bug 记录
bug·cursor
还是大剑师兰特1 天前
Flink面试题及详细答案100道(1-20)- 基础概念与架构
大数据·flink·大剑师·flink面试题