大数据bug-sqoop(二:sqoop同步mysql数据到hive进行字段限制。)

一:sqoop脚本解析。

sql 复制代码
#!/bin/sh
mysqlHost=$1
mysqlUserName=$2
mysqlUserPass=$3
mysqlDbName=$4
sql=$5
split=$6
target=$7
hiveDbName=$8
hiveTbName=$9
partFieldName=${10}
inputDate=${11}
 
echo ${mysqlHost}
echo ${mysqlUserName}
echo ${mysqlUserPass}
echo ${mysqlDbName}
echo ${sql}
echo ${split}
echo ${target}
echo ${hiveDbName}
echo ${hiveTbName}
echo ${partFieldName}
echo ${inputDate}
 
 
sqoop import "-Dorg.apache.sqoop.splitter.allow_text_splitter=true" \
--connect jdbc:mysql://${mysqlHost}/${mysqlDbName}?tinyInt1isBit=false \
--username ${mysqlUserName} \
--password ${mysqlUserPass} \
--query "${sql}" \
--split-by ${split}  \
--target-dir ${target}  \
--hive-overwrite \
--delete-target-dir \
--fields-terminated-by '\t' \
--null-string "" \
--hive-import \
--null-non-string "false" \
--hive-database ${hiveDbName} \
--hive-table ${hiveTbName} \
--hive-drop-import-delims \
--hive-partition-key ${partFieldName} \
--hive-partition-value ${inputDate}
  1. 新增加三个参数
    1. --query "${sql}" \ 这个参数添加对应表的sql语句。注意结尾必须添加 $CONDITIONS ,必须添加where 条件,如果没有where条件,写成where 1=1。案例如下:
      "select id,key_id,key_type,'' as encryption_cert_chain,device_type,account_id_hash,user_identifier,user_id,request_id,device_id,vehicle_id,vehicle_identifier,device_info,device_oem_id,key_data,import_immobilizer_token_request_data,friendly_name,digital_key_status,digital_key_status_in_vehicle,digital_key_status_in_device,key_valid_from,key_valid_to,shared_keys,shareable_keys,manufacturer,state_in_vehicle,state_in_device,key_status_for_vehicle,'' as device_enc_public_key,'' as digital_key_public_key,'' as digital_key_cert,'' as instance_ca_cert,entitlement,rights,slot_id,protocol_type,group_identifier,verify_result,deleted,create_time,update_time,fsn,action_type from kts_key where 1=1 and \$CONDITIONS"

    2. --split-by ${split} \ 这个参数是切分数据的分割字段,一般来讲是mysql的主键。

    3. --target-dir ${target} \ 这个参数指一个路径。可以随意指定一个目录,

二:命令。

sql 复制代码
  sh  test.sh 99.99.99.99:3306 \
bigdata 123222 ssss  "select  id,key_id,key_type,'' as encryption_cert_chain,device_type,account_id_hash,user_identifier,user_id,request_id,device_id,vehicle_id,vehicle_identifier,device_info,device_oem_id,key_data,import_immobilizer_token_request_data,friendly_name,digital_key_status,digital_key_status_in_vehicle,digital_key_status_in_device,key_valid_from,key_valid_to,shared_keys,shareable_keys,manufacturer,state_in_vehicle,state_in_device,key_status_for_vehicle,'' as device_enc_public_key,'' as digital_key_public_key,'' as digital_key_cert,'' as instance_ca_cert,entitlement,rights,slot_id,protocol_type,group_identifier,verify_result,deleted,create_time,update_time,fsn,action_type from kts_key where 1=1 and  \$CONDITIONS"  id "/tmp/test" ods ods_okp p_dt 2023-08-15
相关推荐
袖清暮雨2 分钟前
5_SparkGraphX讲解
大数据·算法·spark
程序员shen1616116 分钟前
注意⚠️:矩阵系统源码开发/SaaS矩阵系统开源/抖音矩阵开发优势和方向
java·大数据·数据库·python·php
百家方案19 分钟前
「下载」智慧园区及重点区域安全防范解决方案:框架统一规划,建设集成管理平台
大数据·人工智能·安全·智慧园区·数智化园区
小刘鸭!2 小时前
Flink窗口window详解(分类、生命周期、窗口分配器、窗口函数、触发器)
大数据·flink
出发行进2 小时前
Hive其九,排名函数,练习和自定义函数
大数据·数据仓库·hive·hadoop·数据分析
szxinmai主板定制专家2 小时前
【国产NI替代】基于全国产FPGA的16振动+2转速+8路IO口输入输出(24bits)256k采样率,高精度终端采集板卡
大数据·人工智能·fpga开发
winner88813 小时前
Hive SQL 之 `LATERAL VIEW EXPLODE` 的正确打开方式
hive·hadoop·sql·explode·lateral view·hive split
喵~来学编程啦3 小时前
【数据科学导论】第四章·特征工程与探索性分析
大数据·大数据入门·人工智能入门
SelectDB技术团队6 小时前
一文了解多云原生的现代化实时数仓 SelectDB Cloud
大数据·数据库·数据仓库·云原生·云计算
工业互联网专业6 小时前
Python大数据可视化:基于Python对B站热门视频的数据分析与研究_flask+hive+spider
hive·python·数据分析·flask·毕业设计·源码·spider