大数据bug-sqoop(二:sqoop同步mysql数据到hive进行字段限制。)

一:sqoop脚本解析。

sql 复制代码
#!/bin/sh
mysqlHost=$1
mysqlUserName=$2
mysqlUserPass=$3
mysqlDbName=$4
sql=$5
split=$6
target=$7
hiveDbName=$8
hiveTbName=$9
partFieldName=${10}
inputDate=${11}
 
echo ${mysqlHost}
echo ${mysqlUserName}
echo ${mysqlUserPass}
echo ${mysqlDbName}
echo ${sql}
echo ${split}
echo ${target}
echo ${hiveDbName}
echo ${hiveTbName}
echo ${partFieldName}
echo ${inputDate}
 
 
sqoop import "-Dorg.apache.sqoop.splitter.allow_text_splitter=true" \
--connect jdbc:mysql://${mysqlHost}/${mysqlDbName}?tinyInt1isBit=false \
--username ${mysqlUserName} \
--password ${mysqlUserPass} \
--query "${sql}" \
--split-by ${split}  \
--target-dir ${target}  \
--hive-overwrite \
--delete-target-dir \
--fields-terminated-by '\t' \
--null-string "" \
--hive-import \
--null-non-string "false" \
--hive-database ${hiveDbName} \
--hive-table ${hiveTbName} \
--hive-drop-import-delims \
--hive-partition-key ${partFieldName} \
--hive-partition-value ${inputDate}
  1. 新增加三个参数
    1. --query "{sql}" \\ 这个参数添加对应表的sql语句。注意结尾必须添加 CONDITIONS ,必须添加where 条件,如果没有where条件,写成where 1=1。案例如下:
      "select id,key_id,key_type,'' as encryption_cert_chain,device_type,account_id_hash,user_identifier,user_id,request_id,device_id,vehicle_id,vehicle_identifier,device_info,device_oem_id,key_data,import_immobilizer_token_request_data,friendly_name,digital_key_status,digital_key_status_in_vehicle,digital_key_status_in_device,key_valid_from,key_valid_to,shared_keys,shareable_keys,manufacturer,state_in_vehicle,state_in_device,key_status_for_vehicle,'' as device_enc_public_key,'' as digital_key_public_key,'' as digital_key_cert,'' as instance_ca_cert,entitlement,rights,slot_id,protocol_type,group_identifier,verify_result,deleted,create_time,update_time,fsn,action_type from kts_key where 1=1 and \$CONDITIONS"

    2. --split-by ${split} \ 这个参数是切分数据的分割字段,一般来讲是mysql的主键。

    3. --target-dir ${target} \ 这个参数指一个路径。可以随意指定一个目录,

二:命令。

sql 复制代码
  sh  test.sh 99.99.99.99:3306 \
bigdata 123222 ssss  "select  id,key_id,key_type,'' as encryption_cert_chain,device_type,account_id_hash,user_identifier,user_id,request_id,device_id,vehicle_id,vehicle_identifier,device_info,device_oem_id,key_data,import_immobilizer_token_request_data,friendly_name,digital_key_status,digital_key_status_in_vehicle,digital_key_status_in_device,key_valid_from,key_valid_to,shared_keys,shareable_keys,manufacturer,state_in_vehicle,state_in_device,key_status_for_vehicle,'' as device_enc_public_key,'' as digital_key_public_key,'' as digital_key_cert,'' as instance_ca_cert,entitlement,rights,slot_id,protocol_type,group_identifier,verify_result,deleted,create_time,update_time,fsn,action_type from kts_key where 1=1 and  \$CONDITIONS"  id "/tmp/test" ods ods_okp p_dt 2023-08-15
相关推荐
一只鹿鹿鹿8 分钟前
智慧能源大数据平台建设方案(PPT)
java·大数据·数据库·能源
深蓝易网20 分钟前
深度拆解!MES如何重构生产计划与排产调度全流程?
大数据·运维·人工智能·重构·架构·制造
intcube21 分钟前
集中运营、分散决策,寻找最佳财务规划的平衡点
大数据·信息可视化·数据分析·全面预算管理·财务管理·财务规划
时序数据说29 分钟前
IoTDB 分段查询语句深度剖析:GROUP BY 与时序语义的完美结合
大数据·数据库·开源·时序数据库·iotdb
Light601 小时前
Spark在大数据ETL中的应用:数据清洗与转换实战
大数据·spark·etl·数据清洗·数据转换
人大博士的交易之路2 小时前
今日行情明日机会——20250512
大数据·数学建模·数据挖掘·缠论·缠中说禅·涨停回马枪
庄小焱2 小时前
数据治理域——数据治理体系建设
大数据·数据治理·系统设计·数仓系统设计
芯盾时代2 小时前
数据出境的安全合规思考
大数据·人工智能·安全·网络安全·信息与通信
不学会Ⅳ3 小时前
【吃透 Elasticsearch 的核心原理】学习步骤
大数据·学习·elasticsearch
李昊哲小课5 小时前
tensorflow-cpu
大数据·人工智能·python·深度学习·数据分析·tensorflow