文章目录
概要
本文主要总结kafka的位移是如何管理的,在broker端如何通过命令行查看到位移信息,并从代码层面总结了位移的提交方式。
消费位移
对于 Kafka 中的分区而言,它的每条消息都有唯一offset ,用来表示消息在分区中对应位置;对于消费者来说,它也有 offset 的概念,消费者使用 offse 来表示消费到分区中某个消息所在的位置。可通过命令行在查看到一个群组,在topic中两者当前的位置
bin/kafka-consumer-groups.sh --bootstrap-server node1:9092 --describe --group kafka-boot
shell
[root@node1 kafka_2.13-3.2.1]# bin/kafka-consumer-groups.sh --bootstrap-server node1:9092 --describe --group kafka-boot
Consumer group 'kafka-boot' has no active members.
GROUP TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG CONSUMER-ID HOST CLIENT-ID
kafka-boot test-error-topic 0 26 26 0 - - -
kafka-boot normal-test 0 23 24 1 - - -
这里对offse
做些区分 对于消息在分区中的位置 CURRENT-OFFSET
称为"偏移量" 或消息位移;对于消费者消费到的位置,LOG-END-OFFSET
称为"位移 ,有时候也会更明确地称之为"消费位移"。
生产者位移跟消费者位移的关系可以用下图来说明:
总结几个需要注意的点:
- 分区副本有两种类型
领导者副本:生产者跟消费者的请求都只会经过领导者副本 ;
跟随者副本:首领之外的副本,不处理客户端请求,从领导者副本那里通过拉取的方式同步消息 - 消费位移存储在Zookeeper或Kafka中,新消费者客户端,偏移量存储咋Kafka内部主题
__consumer_offsets
- 消费者提交的位移是当前消费消息位移的下一个位置,即:lastConsumeedOffset+1
__consumer_offsets主题
Consumer需要向Kafka记录自己的位移数据,这个汇报过程称为提交位移(Committing Offsets)。
老版本 Consumer 的位移是提交到 ZooKeeper 中保存的。当 Consumer 重启后,它能自动从 ZooKeeper 中读取位移数据,从而在上次消费截止的地方继续消费。这种设计使得Kafka Broker 不需要保存位移数据,减少了 Broker 端需要持有的状态空间,因而有利于实现高伸缩性。
但是,ZooKeeper 其实并不适用于这种高频的写操作,Kafka 社区自 0.8.2.x 版本开始推出了全新的位移管理
机制,将 Consumer 的位移数据作为一条条普通的 Kafka 消息,提交到 __consumer_offsets
中。可以这么说,
__consumer_offsets 的主要作用是保存 Kafka 消费者的位移信息。这种方式能够满足高频的写操作。
两个相关参数:
offsets.topic.num.partitions
: 设置 __consumer_offsets
主题的分区数,默认是50个分区
offsets.topic.replication.factor
: 设置__consumer_offsets
主题的副本数,默认是3(下载安装的包中此值可能为1 )
当Kafka 集群中的第一个 Consumer 程序启动时,Kafka 会自动创建位移主题
一共有50个分区,那么消费者将位移提交到了哪个分区呢?
通过如下公式可以选出consumer消费的offset要提交到__consumer_offsets的哪个分区,这个分区leader对应的broker
就是这个consumer group的coordinator
公式:Math.abs(groupID.hashCode()) % numPartitions
Kafka 1.0.2及以后提供了kafka_consumer_groups.sh脚本供用户查看consumer信息
1. 创建一个topic,分区数设置为1,副本数设置为1
shell
[root@node1 kafka_2.13-3.2.1]# bin/kafka-topics.sh --bootstrap-server node1:9092 --create --topic test-offset --partitions 1 --replication-factor 1
Created topic test-offset.
[root@node1 kafka_2.13-3.2.1]# bin/kafka-topics.sh --bootstrap-server node1:9092 --describe --topic test-offset
Topic: test-offset TopicId: in6gxQ5OQS6x9R8V3oJ7AQ PartitionCount: 1 ReplicationFactor: 1 Configs: segment.bytes=1073741824
Topic: test-offset Partition: 0 Leader: 0 Replicas: 0 Isr: 0
2. 向主题test-offset中发送消息
shell
[root@node1 kafka_2.13-3.2.1]# bin/kafka-console-producer.sh --broker-list node1:9092 --topic test-offset
>hello
3. 创建一个消费组,并从头开始消费
shell
[root@node1 kafka_2.13-3.2.1]# bin/kafka-console-consumer.sh --bootstrap-server node1:9092 --from-beginning --consumer-property group.id=testOffsetGroup --topic test-offset
hello
4. 用代码根据上面的公式计算消费组testOffsetGroup提交位移的分区数
java
@Test
void getCommitOffsetPartitionTest() {
String groupId = "testOffsetGroup";
// 运行结果为16
System.out.println(Math.abs(groupId.hashCode() % 50));
}
- 将kafka配置文件consumer.properties中设置exclude.internal.topics=false,并重启服务
6. 查看主题__consumer_offsets第16分区上的信息,可以看到消费组testOffsetGroup提交的位移确实保存在了16分区上
shell
[root@node1 kafka_2.13-3.2.1]# bin/kafka-console-consumer.sh --topic __consumer_offsets --partition 16 --bootstrap-server node1:9092 --formatter "kafka.coordinator.group.GroupMetadataManager\$OffsetsMessageFormatter" --from-beginning
[testOffsetGroup,test-offset,0]::OffsetAndMetadata(offset=1, leaderEpoch=Optional.empty, metadata=, commitTimestamp=1691896116191, expireTimestamp=None)
[testOffsetGroup,test-offset,0]::OffsetAndMetadata(offset=1, leaderEpoch=Optional.empty, metadata=, commitTimestamp=1691896121189, expireTimestamp=None)
[testOffsetGroup,test-offset,0]::OffsetAndMetadata(offset=1, leaderEpoch=Optional.empty, metadata=, commitTimestamp=1691896126188, expireTimestamp=None)
[testOffsetGroup,test-offset,0]::OffsetAndMetadata(offset=1, leaderEpoch=Optional.empty, metadata=, commitTimestamp=1691896131188, expireTimestamp=None)
[testOffsetGroup,test-offset,0]::OffsetAndMetadata(offset=1, leaderEpoch=Optional.empty, metadata=, commitTimestamp=1691896133573, expireTimestamp=None)
[testOffsetGroup,test-offset,0]::OffsetAndMetadata(offset=1, leaderEpoch=Optional.empty, metadata=, commitTimestamp=1691896162124, expireTimestamp=None)
[testOffsetGroup,test-offset,0]::OffsetAndMetadata(offset=1, leaderEpoch=Optional.empty, metadata=, commitTimestamp=1691896167124, expireTimestamp=None)
[testOffsetGroup,test-offset,0]::OffsetAndMetadata(offset=1, leaderEpoch=Optional.empty, metadata=, commitTimestamp=1691896172123, expireTimestamp=None)
[testOffsetGroup,test-offset,0]::OffsetAndMetadata(offset=1, leaderEpoch=Optional.empty, metadata=, commitTimestamp=1691896177124, expireTimestamp=None)
[testOffsetGroup,test-offset,0]::OffsetAndMetadata(offset=1, leaderEpoch=Optional.empty, metadata=, commitTimestamp=1691896178781, expireTimestamp=None)
从上面也可看出__consumer_offsets topic的每一日志项的格式都是:
[Group, Topic, Partition]::[OffsetMetadata[Offset, Metadata], CommitTime, ExpirationTime]
客户端提交消费位移是使用OffsetCommitRequest 请求实现的,其结构如下
__consumer_offsets这个主题中的消息格式为KV对,key为[Group, Topic, Partition],value可以简单理解为记录了偏移量;这样的记录方式,使得broker端不需要关系group下有多少个消费者,新增消费者或者减少消费者发生重平衡时,都能准确地定位到对应地分区应该从哪个位置开始消费。
位移提交
鉴于位移提交甚至是位移管理对 Consumer 端的巨大影响,Kafka,特别是KafkaConsumer API,提供了多种提交位移的方法。从用户的角度来说,位移提交分为自动提交和手动提交;从 Consumer 端的角度来说,位移提交分为同步提交和异步提交。
自动提交
自动提交,就是指 Kafka Consumer 在后台默默地为你提交位移
两个重要的参数
enable.auto.commit
设置是否自动提交位移,默认是trueauto.commit.interval.ms
:设置自动提交为true时,该参数生效,标识多久提交一次位移,默认5s,
java
public static void main(String[] args) {
Map<String, Object> configs = new HashMap<>();
configs.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "node1:9092");
configs.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
configs.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, UserDeserializer.class);
configs.put(ConsumerConfig.GROUP_ID_CONFIG, "consumer1");
configs.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
configs.put(ConsumerConfig.CLIENT_ID_CONFIG, "con1");
// 设置偏移量自动提交。自动提交是默认值。这里做示例。
configs.put("enable.auto.commit", "true");
// 偏移量自动提交的时间间隔
configs.put("auto.commit.interval.ms", "2000");
KafkaConsumer<String, String> consumer = new KafkaConsumer<String,String>(configs);
consumer.subscribe(Collections.singleton("tp_demo_01"));
while (true) {
ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
for (ConsumerRecord<String, String> record : records) {
System.out.println(record.topic()
+ "\t" + record.partition()
+ "\t" + record.offset()
+ "\t" + record.key()
+ "\t" + record.value());
}
}
}
设置了 enable.auto.commit 为 true,Kafka 会保证在开始调用 poll 方法时,提交上次 poll 返回的所有消息。从顺序上来说,poll 方法的逻辑是先提交上一批消息的位移,再处理下一批消息,因此它能保证不出现消费丢失的情况。但是会出现消息重复消费。
在默认情况下,Consumer 每 5 秒自动提交一次位移。现在,我们假设提交位移之后的 3秒发生了 Rebalance 操作。在 Rebalance 之后,所有 Consumer 从上一次提交的位移处继续消费,但该位移已经是 3 秒前的位移数据了,故在Rebalance 发生前 3 秒消费的所有数据都要重新再消费一次。虽然你能够通过减少 auto.commit.interval.ms 的值来提高提交频率,但这么做只能缩小重复消费的时间窗口,不可能完全消除它。这是自动提交机制的一个缺陷。
手动同步提交
开启手动提交位移的方法就是设置enable.auto.commit
为 false。但是,仅仅设置它为 false 还不够,因为你只是告诉
Kafka Consumer 不要自动提交位移而已,你还需要调用相应的 API 手动提交位移。
java
public static void main(String[] args) {
Map<String, Object> configs = new HashMap<>();
configs.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "node1:9092");
configs.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
configs.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, UserDeserializer.class);
configs.put(ConsumerConfig.GROUP_ID_CONFIG, "consumer1");
configs.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
configs.put(ConsumerConfig.CLIENT_ID_CONFIG, "con1");
configs.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
KafkaConsumer<String, String> consumer = new KafkaConsumer<String,String>(configs);
consumer.subscribe(Collections.singleton("tp_demo_01"));
while (true) {
ConsumerRecords<String, String> records =
consumer.poll(Duration.ofSeconds(1));
process(records); // 处理消息
try {
consumer.commitSync();
} catch (CommitFailedException e) {
handle(e); // 处理提交失败异常
}
}
}
调用 commitSync() 时,Consumer 程序会处于阻塞状态,直到远端的 Broker 返回提交结果,这个状态才会结束,这样就会影响TPS。
鉴于此问题,还有另外一个提交方式
手动异步提交
java
public static void main(String[] args) {
Map<String, Object> configs = new HashMap<>();
configs.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "node1:9092");
configs.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
configs.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, UserDeserializer.class);
configs.put(ConsumerConfig.GROUP_ID_CONFIG, "consumer1");
configs.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
configs.put(ConsumerConfig.CLIENT_ID_CONFIG, "con1");
configs.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
KafkaConsumer<String, String> consumer = new KafkaConsumer<String,String>(configs);
while (true) {
ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
process(records); // 处理消息
consumer.commitAsync((offsets, exception) -> {
if (exception != null) {
handle(exception);
}
});
}
}
commitAsync 是否能够替代 commitSync 呢?答案是不能。commitAsync 的问题在于,出现问题时它不会自动重试。因为它是异步操作,倘若提交失败后自动重试,那么它重试时提交的位移值可能早已经"过期"或不是最新值了。因此,异步提交的重试其实没有意义,所以 commitAsync 是不会重试的。
是手动提交,需要将 commitSync 和 commitAsync 组合使用才能到达最理想的效果,原因有两个:
- 利用 commitSync 的自动重试来规避那些瞬时错误,比如网络的瞬时抖动,Broker 端 GC 等。这些问题都是短暂的,自动重试通常都会成功。
- 不希望程序总处于阻塞状态,影响 TPS。
java
public static void main(String[] args) {
Map<String, Object> configs = new HashMap<>();
configs.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "node1:9092");
configs.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
configs.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, UserDeserializer.class);
configs.put(ConsumerConfig.GROUP_ID_CONFIG, "consumer1");
configs.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
configs.put(ConsumerConfig.CLIENT_ID_CONFIG, "con1");
configs.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
KafkaConsumer<String, String> consumer = new KafkaConsumer<String,
String>(configs);
consumer.subscribe(Collections.singleton("tp_demo_01"));
try {
while (true) {
ConsumerRecords<String, String> records =
consumer.poll(Duration.ofSeconds(1));
consumer.commitAsync();
process(records); // 处理消息
consumer.commitAsync(); // 异步提交
}
} catch (Exception e) {
handle(e); // 处理异常
} finally {
try {
consumer.commitSync();// 最后一次提交使用同步阻塞式提交
} finally {
consumer.close();
}
}
}