YOLOv5白皮书-第Y6周:模型改进

📌本周任务:模型改进📌

注:对yolov5l.yaml 文件中的backbone 模块和head模块进行改进。

任务结构图:

YOLOv5s网络结构图:

原始模型代码:

python 复制代码
# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

改进代码:

python 复制代码
# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C2, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 3, C3, [512]],
   #[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   #[-1, 3, C3, [1024]],
   [-1, 1, SPPF, [512, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 3, 2]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 12], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 8], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[15, 18, 21], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

运行模型:

python train.py --img 640 --batch 8 --epoch 1 --data data/ab.yaml --cfg models/yolov5s.yaml


(venv) D:\Out\yolov5-master>python train.py --img 640 --batch 8 --epoch 1 --data data/ab.yaml --cfg models/yolov5s.yaml

train: weights=yolov5s.pt, cfg=models/yolov5s.yaml, data=data/ab.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=1, batch_size=8, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest

github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5

YOLOv5 2023-6-27 Python-3.10.3 torch-2.0.1+cpu CPU

hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0

Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5 runs in Comet

TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/

Overriding model.yaml nc=80 with nc=4

from n params module arguments

0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2]

1 -1 1 18560 models.common.Conv [32, 64, 3, 2]

2 -1 1 18816 models.common.C3 [64, 64, 1]

3 -1 1 14592 models.common.C2 [64, 64, 1]

4 -1 1 73984 models.common.Conv [64, 128, 3, 2]

5 -1 2 115712 models.common.C3 [128, 128, 2]

6 -1 1 295424 models.common.Conv [128, 256, 3, 2]

7 -1 3 625152 models.common.C3 [256, 256, 3]

8 -1 1 1180672 models.common.Conv [256, 512, 3, 2]

9 -1 1 1182720 models.common.C3 [512, 512, 1]

10 -1 1 656896 models.common.SPPF [512, 512, 5]

11 -1 1 131584 models.common.Conv [512, 256, 1, 1]

12 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']

13 [-1, 6] 1 0 models.common.Concat [1]

14 -1 1 361984 models.common.C3 [512, 256, 1, False]

15 -1 1 33024 models.common.Conv [256, 128, 1, 1]

16 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']

17 [-1, 4] 1 0 models.common.Concat [1]

18 -1 1 90880 models.common.C3 [256, 128, 1, False]

19 -1 1 147712 models.common.Conv [128, 128, 3, 2]

20 [-1, 14] 1 0 models.common.Concat [1]

21 -1 1 329216 models.common.C3 [384, 256, 1, False]

22 -1 1 590336 models.common.Conv [256, 256, 3, 2]

23 [-1, 10] 1 0 models.common.Concat [1]

24 -1 1 1313792 models.common.C3 [768, 512, 1, False]

25 [17, 20, 23] 1 38097 models.yolo.Detect [4, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [256, 384, 768]]

YOLOv5s summary: 229 layers, 7222673 parameters, 7222673 gradients, 17.0 GFLOPs

Transferred 49/373 items from yolov5s.pt

optimizer: SGD(lr=0.01) with parameter groups 61 weight(decay=0.0), 64 weight(decay=0.0005), 64 bias

train: Scanning D:\Out\yolov5-master\paper_data\train.cache... 160 images, 0 backgrounds, 0 corrupt: 100%|██████████| 1

val: Scanning D:\Out\yolov5-master\paper_data\val.cache... 20 images, 0 backgrounds, 0 corrupt: 100%|██████████| 20/20

AutoAnchor: 5.35 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset

Plotting labels to runs\train\exp3\labels.jpg...

Image sizes 640 train, 640 val

Using 4 dataloader workers

Logging results to runs\train\exp3

Starting training for 1 epochs...

Epoch GPU_mem box_loss obj_loss cls_loss Instances Size

0/0 0G 0.1101 0.04563 0.0454 49 640: 100%|██████████| 20/20 [02:44<00:00, 8.

Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 2/2 [00:05<0

all 20 60 0.000542 0.25 0.000682 0.000268

1 epochs completed in 0.048 hours.

Optimizer stripped from runs\train\exp3\weights\last.pt, 14.8MB

Optimizer stripped from runs\train\exp3\weights\best.pt, 14.8MB

Validating runs\train\exp3\weights\best.pt...

Fusing layers...

YOLOv5s summary: 168 layers, 7213041 parameters, 0 gradients, 16.8 GFLOPs

Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 2/2 [00:05<0

all 20 60 0.000542 0.25 0.000685 0.000268

banana 20 12 0 0 0 0

snake fruit 20 20 0 0 0 0

dragon fruit 20 13 0.00217 1 0.00274 0.00107

pineapple 20 15 0 0 0 0

Results saved to runs\train\exp3


相关推荐
红色的山茶花3 小时前
YOLOv9-0.1部分代码阅读笔记-train.py
笔记·深度学习·yolo
烟波人长安吖~15 小时前
【目标跟踪+人流计数+人流热图(Web界面)】基于YOLOV11+Vue+SpringBoot+Flask+MySQL
vue.js·pytorch·spring boot·深度学习·yolo·目标跟踪
一勺汤1 天前
YOLO11改进-模块-引入星型运算Star Blocks
网络·yolo·目标检测·改进·魔改·yolov11·yolov11改进
红色的山茶花1 天前
YOLOv9-0.1部分代码阅读笔记-anchor_generator.py
笔记·深度学习·yolo
麦田里的稻草人w1 天前
【YOLO】(基础篇一)YOLO介绍
人工智能·python·神经网络·yolo·机器学习
Coovally AI模型快速验证1 天前
YOLO11全解析:从原理到实战,全流程体验下一代目标检测
人工智能·yolo·目标检测·机器学习·计算机视觉·目标跟踪·yolo11
红色的山茶花1 天前
YOLOv9-0.1部分代码阅读笔记-hubconf.py
笔记·深度学习·yolo
一勺汤2 天前
YOLO11改进-注意力-引入多尺度卷积注意力模块MSCAM
yolo·目标检测·计算机视觉·改进·魔改·yolov11·yolov11改进
千天夜2 天前
深度学习中的残差网络、加权残差连接(WRC)与跨阶段部分连接(CSP)详解
网络·人工智能·深度学习·神经网络·yolo·机器学习
一勺汤2 天前
YOLOv8模型改进 第二十五讲 添加基于卷积调制(Convolution based Attention) 替换自注意力机制
深度学习·yolo·计算机视觉·模块·yolov8·yolov8改进·魔改