时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)

目录

    • [时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)](#时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价))

预测结果







基本介绍

MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)

1.MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价);

2.运行环境Matlab2018及以上,data为数据集,单变量时间序列预测;

3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;

4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;

程序设计

matlab 复制代码
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/132093256

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
THMAIL1 天前
机器学习从入门到精通 - Transformer颠覆者:BERT与预训练模型实战解析
python·随机森林·机器学习·分类·bootstrap·bert·transformer
THMAIL3 天前
机器学习从入门到精通 - 集成学习核武器:随机森林与XGBoost工业级应用
人工智能·python·算法·随机森林·机器学习·集成学习·sklearn
背包客研究3 天前
逻辑回归 vs 支持向量机 vs 随机森林:哪个更适合小数据集?
随机森林·支持向量机·逻辑回归
THMAIL4 天前
机器学习从入门到精通 - 降维艺术:PCA与t-SNE带你玩转高维数据可视化
人工智能·python·决策树·随机森林·机器学习·分类·bootstrap
xz2024102****4 天前
吴恩达机器学习补充:决策树和随机森林
决策树·随机森林·机器学习
计算机源码社6 天前
计算机毕设项目 基于Python与机器学习的B站视频热度分析与预测系统 基于随机森林算法的B站视频内容热度预测系统
随机森林·机器学习·网络爬虫·课程设计·数据可视化·python项目·毕业设计源码
简简单单做算法7 天前
基于GA遗传优化的双向LSTM融合多头注意力(BiLSTM-MATT)时间序列预测算法matlab仿真
人工智能·matlab·时间序列预测·bilstm·ga遗传优化·bilstm-matt·多头注意力
THMAIL8 天前
随机森林的 “Bootstrap 采样” 与 “特征随机选择”:如何避免过拟合?(附分类 / 回归任务实战)
人工智能·算法·决策树·随机森林·分类·bootstrap·sklearn
feifeigo12314 天前
matlab中随机森林算法的实现
算法·随机森林·matlab
尤超宇17 天前
基于随机森林的红酒分类与特征重要性分析
算法·随机森林·分类