时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)

目录

    • [时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)](#时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价))

预测结果







基本介绍

MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)

1.MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价);

2.运行环境Matlab2018及以上,data为数据集,单变量时间序列预测;

3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;

4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;

程序设计

matlab 复制代码
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/132093256

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
Q87622396520 小时前
分布式电源接入电网对电压影响的潮流计算研究
随机森林
落羽的落羽1 天前
【C++】并查集的原理与使用
linux·服务器·c++·人工智能·深度学习·随机森林·机器学习
机器学习之心2 天前
SSA-RF麻雀算法优化随机森林回归+SHAP分析+优化前后对比+新数据预测,MATLAB代码
随机森林·回归·shap分析·ssa-rf
青春不败 177-3266-05203 天前
HMSC联合物种分布模型在群落生态学中的贝叶斯统计分析应用
随机森林·r语言·生态学·生物多样性·生态环境·生物群落·物种分布
Jerryhut3 天前
sklearn函数总结十一 —— 随机森林
人工智能·随机森林·sklearn
山科智能信息处理实验室4 天前
(ICLR-2024)TIME‑LLM:基于大语言模型重编程的时间序列预测
大语言模型·时间序列预测·重编程
梦想的初衷~7 天前
基于R语言机器学习遥感数据处理与模型空间预测技术及实际项目案例分析
随机森林·机器学习·r语言
weixin_贾10 天前
当机器学习遇上生态学:BIOMOD2案例详解物种分布模拟与未来气候情景预测
随机森林·机器学习·支持向量机·物种分布
小艳加油10 天前
解锁遥感生态分析新高度:机器学习(随机森林/XGBoost建模)、R语言数据处理、模型调优与空间预测及经典论文复现
随机森林·遥感数据分析·空间预测
机器学习之心17 天前
GS-RF网格搜索优化随机森林回归+SHAP分析+交叉验证+特征依赖图,MATLAB代码
随机森林·matlab·回归·gs-rf