时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)

目录

    • [时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)](#时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价))

预测结果







基本介绍

MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)

1.MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价);

2.运行环境Matlab2018及以上,data为数据集,单变量时间序列预测;

3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;

4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;

程序设计

matlab 复制代码
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/132093256

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
week_泽14 小时前
随机森林样本权重的计算-弱学习器
学习·算法·随机森林
开开心心_Every3 天前
A3试卷分割工具:免费转为A4格式可离线
游戏·随机森林·微信·pdf·excel·语音识别·最小二乘法
开开心心_Every5 天前
时间自动校准工具:一键同步网络服务器时间
游戏·随机森林·微信·pdf·逻辑回归·excel·语音识别
2401_894828125 天前
从原理到实战:随机森林算法全解析(附 Python 完整代码)
开发语言·python·算法·随机森林
玖日大大8 天前
随机森林算法原理及实战代码解析
算法·随机森林·机器学习
Pyeako12 天前
机器学习--矿物数据清洗(六种填充方法)
人工智能·python·随机森林·机器学习·pycharm·线性回归·数据清洗
千寻girling15 天前
Vue.js 前端开发实战 ( 电子版 ) —— 黑马
前端·javascript·vue.js·b树·决策树·随机森林·最小二乘法
小鸡吃米…20 天前
机器学习中的随机森林算法
算法·随机森林·机器学习
jz_ddk20 天前
[实战] 射频相位噪声单位转换:从dBc/Hz到rad
算法·rf·射频·相位噪声·相噪
能源系统预测和优化研究22 天前
传统机器学习(如xgboost、随机森林等)和深度学习(如LSTM等)在时间序列预测各有什么优缺点?
深度学习·随机森林·机器学习