时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)

目录

    • [时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)](#时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价))

预测结果







基本介绍

MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)

1.MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价);

2.运行环境Matlab2018及以上,data为数据集,单变量时间序列预测;

3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;

4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;

程序设计

matlab 复制代码
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/132093256

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502

[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
云天徽上3 天前
【机器学习案列】使用随机森林(RF)进行白葡萄酒质量预测
人工智能·随机森林·机器学习
宸码4 天前
【机器学习】【集成学习——决策树、随机森林】从零起步:掌握决策树、随机森林与GBDT的机器学习之旅
人工智能·python·算法·决策树·随机森林·机器学习·集成学习
AI Dog7 天前
数学建模中随机森林分类
人工智能·随机森林·机器学习·数学建模·malab
小鹿( ﹡ˆoˆ﹡ )7 天前
深入解析:Python中的决策树与随机森林
python·决策树·随机森林
软件算法开发11 天前
基于遗传优化ELM网络的时间序列预测算法matlab仿真
算法·matlab·时间序列预测·elm·ga-elm
程序猿阿伟12 天前
《C++巧铸随机森林:开启智能决策新境界》
开发语言·c++·随机森林
FreedomLeo115 天前
Python机器学习笔记(五、决策树集成)
python·随机森林·机器学习·梯度提升树模型
机器学习之心15 天前
SABO-CNN-BiGRU-Attention减法优化器优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比
时间序列预测·sabo-cnn-bigru·减法优化器优化·卷积神经网络双向门控循环单元
IT古董16 天前
【机器学习】机器学习的基本分类-监督学习-随机森林(Random Forest)
人工智能·学习·算法·决策树·随机森林·机器学习·分类
Python当打之年17 天前
【机器学习 | 基于Lasso回归和随机森林的上海链家二手房房价预测】
随机森林·机器学习·数据分析·回归·数据可视化