[PyTorch][chapter 52][迁移学习]

前言:

迁移学习(Transfer Learning)是一种机器学习方法,它通过将一个领域中的知识和经验迁移到另一个相关领域中,来加速和改进新领域的学习和解决问题的能力。

这里面主要结合前面ResNet18 例子,详细讲解一下迁移学习的流程


一 简介

迁移学习可以通过以下几种方式实现:

1.1 基于预训练模型的迁移:

将已经在大规模数据集上预训练好的模型(如BERT、GPT等)作为一个通用的特征提取器,然后在新领域的任务上进行微调。

1.2 网络结构迁移:

将在一个领域中训练好的模型的网络结构应用到另一个领域中,并在此基础上进行微调。

1.3 特征迁移:

将在一个领域中训练好的某些特征应用到另一个领域中,并在此基础上进行微调。

word2vec

1.4 参数迁移:

将在一个领域中训练好的模型的参数应用到另一个领域中,并在此基础上进行微调。

本文主要例子用的是 参数迁移


二 Flatten

作用:

输入的向量x [batch, c, w, h]=>[batch, c*w*h]

复制代码
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 16 15:11:35 2023

@author: chengxf2
"""

import torch
from torch import optim,nn

class Flatten(nn.Module):
    
    def __init__(self):
        
        super(Flatten,self).__init__()
        
    
    def forward(self, x):
        
        a = torch.tensor(x.shape[1:])
        #dim 中 input 张量的每一行的乘积。
        shape = torch.prod(a).item()
        #print("\n ---new shape--- ",shape)
        return x.view(-1,shape)

三 迁移学习

torchvision 已经提供好了一些分类器 resnet18,resnet152, 利用其训练好的参数,把最后的分类类型更改掉。

from torchvision.models import resnet152

from torchvision.models import resnet18

注意:

现有分类器分类的类型 > = 新分类器类型,再做transfer.

才能取得好的效果.

|-------|------------|
| 分类器 | 分类类型 |
| 已有分类器 | [猫,狗,鸡,鸭】 |
| 新分类器 | [猫,狗] |

复制代码
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 16 14:56:35 2023

@author: chengxf2
"""

# -*- coding: utf-8 -*-
"""
Created on Tue Aug 15 15:38:18 2023

@author: chengxf2
"""

import torch
from torch import optim,nn
import visdom
from torch.utils.data import DataLoader
from PokeDataset import Pokemon
from torchvision.models import resnet152
from torchvision.models import resnet18

from util import Flatten

batchNum = 32
lr = 1e-3
epochs = 20
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.manual_seed(1234)

root ='pokemon'
resize =224

csvfile ='data.csv'
train_db = Pokemon(root, resize, 'train',csvfile)
val_db = Pokemon(root, resize, 'val',csvfile)
test_db = Pokemon(root, resize, 'test',csvfile)

train_loader = DataLoader(train_db, batch_size =batchNum,shuffle= True,num_workers=4)
val_loader = DataLoader(val_db, batch_size =batchNum,shuffle= True,num_workers=2)
test_loader = DataLoader(test_db, batch_size =batchNum,shuffle= True,num_workers=2)
viz = visdom.Visdom()

def evalute(model, loader):
    
    total =len(loader.dataset)
    correct =0
    for x,y in loader:
        
        x = x.to(device)
        y = y.to(device)
        
        with torch.no_grad():
            
            logits = model(x)
            pred = logits.argmax(dim=1)
            correct += torch.eq(pred, y).sum().float().item()
    
    acc = correct/total
    
    return acc   
        
        

def main():
    
    trained_model = resnet152(pretrained=True)
    
    model = nn.Sequential(*list(trained_model.children())[:-1],
        Flatten(),
        nn.Linear(in_features=2048, out_features=5))
    
   
    
    optimizer = optim.Adam(model.parameters(),lr =lr) 
    criteon = nn.CrossEntropyLoss()
    
    best_epoch=0,
    best_acc=0
    viz.line([0],[-1],win='train_loss',opts =dict(title='train loss'))
    viz.line([0],[-1],win='val_loss',  opts =dict(title='val_acc'))
    global_step =0
    
    
  
    for epoch in range(epochs):
        print("\n --main---: ",epoch)
        for step, (x,y) in enumerate(train_loader):
            #x:[b,3,224,224] y:[b]

             x = x.to(device)
             y = y.to(device)
             #print("\n --x---: ",x.shape)
             
             logits =model(x)
             loss = criteon(logits, y)
             #print("\n --loss---: ",loss.shape)
             optimizer.zero_grad()
             loss.backward()
             optimizer.step()
             
             viz.line(Y=[loss.item()],X=[global_step],win='train_loss',update='append')
             global_step +=1
             
        if epoch %2 ==0:
            
             val_acc = evalute(model, val_loader)
             
             if val_acc>best_acc:
                 best_acc = val_acc
                 best_epoch =epoch
                 torch.save(model.state_dict(),'best.mdl')
             print("\n val_acc ",val_acc)
             viz.line([val_acc],[global_step],win='val_loss',update='append')
             
    print('\n best acc',best_acc, "best_epoch: ",best_epoch)
    
    model.load_state_dict(torch.load('best.mdl'))
    print('loaded from ckpt')
    
    test_acc = evalute(model, test_loader)
    print('\n test acc',test_acc)
                 

if __name__ == "__main__":
    
    main()

参考:

https://blog.csdn.net/qq_44089890/article/details/130460700

课时107 迁移学习实战_哔哩哔哩_bilibili

相关推荐
机器学习之心29 分钟前
基于CNN的航空发动机剩余寿命预测 (MATLAB实现)
人工智能·matlab·cnn
钝挫力PROGRAMER30 分钟前
AI中的“预训练”是什么意思
人工智能
Godspeed Zhao37 分钟前
自动驾驶中的传感器技术39——Radar(0)
人工智能·机器学习·自动驾驶·毫米波雷达
idealmu2 小时前
知识蒸馏(KD)详解一:认识一下BERT 模型
人工智能·深度学习·bert
Cathyqiii2 小时前
生成对抗网络(GAN)
人工智能·深度学习·计算机视觉
ai产品老杨3 小时前
打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程的智慧工业开源了
人工智能·开源·音视频·能源
小陈phd3 小时前
高级RAG策略学习(五)——llama_index实现上下文窗口增强检索RAG
人工智能
凯禾瑞华养老实训室5 小时前
人才教育导向下:老年生活照护实训室助力提升学生老年照护服务能力
人工智能
湫兮之风6 小时前
Opencv: cv::LUT()深入解析图像块快速查表变换
人工智能·opencv·计算机视觉
Christo37 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘