[PyTorch][chapter 52][迁移学习]

前言:

迁移学习(Transfer Learning)是一种机器学习方法,它通过将一个领域中的知识和经验迁移到另一个相关领域中,来加速和改进新领域的学习和解决问题的能力。

这里面主要结合前面ResNet18 例子,详细讲解一下迁移学习的流程


一 简介

迁移学习可以通过以下几种方式实现:

1.1 基于预训练模型的迁移:

将已经在大规模数据集上预训练好的模型(如BERT、GPT等)作为一个通用的特征提取器,然后在新领域的任务上进行微调。

1.2 网络结构迁移:

将在一个领域中训练好的模型的网络结构应用到另一个领域中,并在此基础上进行微调。

1.3 特征迁移:

将在一个领域中训练好的某些特征应用到另一个领域中,并在此基础上进行微调。

word2vec

1.4 参数迁移:

将在一个领域中训练好的模型的参数应用到另一个领域中,并在此基础上进行微调。

本文主要例子用的是 参数迁移


二 Flatten

作用:

输入的向量x [batch, c, w, h]=>[batch, c*w*h]

复制代码
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 16 15:11:35 2023

@author: chengxf2
"""

import torch
from torch import optim,nn

class Flatten(nn.Module):
    
    def __init__(self):
        
        super(Flatten,self).__init__()
        
    
    def forward(self, x):
        
        a = torch.tensor(x.shape[1:])
        #dim 中 input 张量的每一行的乘积。
        shape = torch.prod(a).item()
        #print("\n ---new shape--- ",shape)
        return x.view(-1,shape)

三 迁移学习

torchvision 已经提供好了一些分类器 resnet18,resnet152, 利用其训练好的参数,把最后的分类类型更改掉。

from torchvision.models import resnet152

from torchvision.models import resnet18

注意:

现有分类器分类的类型 > = 新分类器类型,再做transfer.

才能取得好的效果.

|-------|------------|
| 分类器 | 分类类型 |
| 已有分类器 | [猫,狗,鸡,鸭】 |
| 新分类器 | [猫,狗] |

复制代码
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 16 14:56:35 2023

@author: chengxf2
"""

# -*- coding: utf-8 -*-
"""
Created on Tue Aug 15 15:38:18 2023

@author: chengxf2
"""

import torch
from torch import optim,nn
import visdom
from torch.utils.data import DataLoader
from PokeDataset import Pokemon
from torchvision.models import resnet152
from torchvision.models import resnet18

from util import Flatten

batchNum = 32
lr = 1e-3
epochs = 20
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.manual_seed(1234)

root ='pokemon'
resize =224

csvfile ='data.csv'
train_db = Pokemon(root, resize, 'train',csvfile)
val_db = Pokemon(root, resize, 'val',csvfile)
test_db = Pokemon(root, resize, 'test',csvfile)

train_loader = DataLoader(train_db, batch_size =batchNum,shuffle= True,num_workers=4)
val_loader = DataLoader(val_db, batch_size =batchNum,shuffle= True,num_workers=2)
test_loader = DataLoader(test_db, batch_size =batchNum,shuffle= True,num_workers=2)
viz = visdom.Visdom()

def evalute(model, loader):
    
    total =len(loader.dataset)
    correct =0
    for x,y in loader:
        
        x = x.to(device)
        y = y.to(device)
        
        with torch.no_grad():
            
            logits = model(x)
            pred = logits.argmax(dim=1)
            correct += torch.eq(pred, y).sum().float().item()
    
    acc = correct/total
    
    return acc   
        
        

def main():
    
    trained_model = resnet152(pretrained=True)
    
    model = nn.Sequential(*list(trained_model.children())[:-1],
        Flatten(),
        nn.Linear(in_features=2048, out_features=5))
    
   
    
    optimizer = optim.Adam(model.parameters(),lr =lr) 
    criteon = nn.CrossEntropyLoss()
    
    best_epoch=0,
    best_acc=0
    viz.line([0],[-1],win='train_loss',opts =dict(title='train loss'))
    viz.line([0],[-1],win='val_loss',  opts =dict(title='val_acc'))
    global_step =0
    
    
  
    for epoch in range(epochs):
        print("\n --main---: ",epoch)
        for step, (x,y) in enumerate(train_loader):
            #x:[b,3,224,224] y:[b]

             x = x.to(device)
             y = y.to(device)
             #print("\n --x---: ",x.shape)
             
             logits =model(x)
             loss = criteon(logits, y)
             #print("\n --loss---: ",loss.shape)
             optimizer.zero_grad()
             loss.backward()
             optimizer.step()
             
             viz.line(Y=[loss.item()],X=[global_step],win='train_loss',update='append')
             global_step +=1
             
        if epoch %2 ==0:
            
             val_acc = evalute(model, val_loader)
             
             if val_acc>best_acc:
                 best_acc = val_acc
                 best_epoch =epoch
                 torch.save(model.state_dict(),'best.mdl')
             print("\n val_acc ",val_acc)
             viz.line([val_acc],[global_step],win='val_loss',update='append')
             
    print('\n best acc',best_acc, "best_epoch: ",best_epoch)
    
    model.load_state_dict(torch.load('best.mdl'))
    print('loaded from ckpt')
    
    test_acc = evalute(model, test_loader)
    print('\n test acc',test_acc)
                 

if __name__ == "__main__":
    
    main()

参考:

https://blog.csdn.net/qq_44089890/article/details/130460700

课时107 迁移学习实战_哔哩哔哩_bilibili

相关推荐
文心快码 Baidu Comate7 分钟前
Comate Spec模式实测:让AI编程更精准可靠
人工智能·ai编程·文心快码·ai编程助手
疾风sxp7 分钟前
nl2sql技术实现自动sql生成
人工智能·word2vec
阿星AI工作室10 分钟前
让gemini3做的网页拥有支付功能,访客变付费用户!附提示词
人工智能
LaughingZhu22 分钟前
Product Hunt 每日热榜 | 2025-12-10
人工智能·经验分享·深度学习·神经网络·产品运营
老蒋新思维25 分钟前
创客匠人 2025 万人峰会核心:AI 驱动知识产品变现革新
大数据·人工智能·网络协议·tcp/ip·创始人ip·创客匠人·知识变现
音沐mu.26 分钟前
【34】犬类品种数据集(有v5/v8模型)/YOLO犬类品种检测
人工智能·yolo·目标检测·犬类品种数据集·犬类品种检测
Want59526 分钟前
Vibe Coding实战案例:利用Qoder打造个人知识库AI助手,并上线魔搭创空间
人工智能·aigc
多则惑少则明33 分钟前
AI测试、大模型测试(七)Java主流大模型框架技术
人工智能·ai测试·ai大模型测试
xinyu_Jina33 分钟前
人像精灵 AI 智能相馆:特征解耦与条件生成对抗网络(cGANs)在人像重构中的应用
人工智能·生成对抗网络·重构
木卫二号Coding36 分钟前
第五十七篇-ComfyUI+V100-32G+安装SD1.5
人工智能