[PyTorch][chapter 52][迁移学习]

前言:

迁移学习(Transfer Learning)是一种机器学习方法,它通过将一个领域中的知识和经验迁移到另一个相关领域中,来加速和改进新领域的学习和解决问题的能力。

这里面主要结合前面ResNet18 例子,详细讲解一下迁移学习的流程


一 简介

迁移学习可以通过以下几种方式实现:

1.1 基于预训练模型的迁移:

将已经在大规模数据集上预训练好的模型(如BERT、GPT等)作为一个通用的特征提取器,然后在新领域的任务上进行微调。

1.2 网络结构迁移:

将在一个领域中训练好的模型的网络结构应用到另一个领域中,并在此基础上进行微调。

1.3 特征迁移:

将在一个领域中训练好的某些特征应用到另一个领域中,并在此基础上进行微调。

word2vec

1.4 参数迁移:

将在一个领域中训练好的模型的参数应用到另一个领域中,并在此基础上进行微调。

本文主要例子用的是 参数迁移


二 Flatten

作用:

输入的向量x [batch, c, w, h]=>[batch, c*w*h]

复制代码
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 16 15:11:35 2023

@author: chengxf2
"""

import torch
from torch import optim,nn

class Flatten(nn.Module):
    
    def __init__(self):
        
        super(Flatten,self).__init__()
        
    
    def forward(self, x):
        
        a = torch.tensor(x.shape[1:])
        #dim 中 input 张量的每一行的乘积。
        shape = torch.prod(a).item()
        #print("\n ---new shape--- ",shape)
        return x.view(-1,shape)

三 迁移学习

torchvision 已经提供好了一些分类器 resnet18,resnet152, 利用其训练好的参数,把最后的分类类型更改掉。

from torchvision.models import resnet152

from torchvision.models import resnet18

注意:

现有分类器分类的类型 > = 新分类器类型,再做transfer.

才能取得好的效果.

|-------|------------|
| 分类器 | 分类类型 |
| 已有分类器 | [猫,狗,鸡,鸭】 |
| 新分类器 | [猫,狗] |

复制代码
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 16 14:56:35 2023

@author: chengxf2
"""

# -*- coding: utf-8 -*-
"""
Created on Tue Aug 15 15:38:18 2023

@author: chengxf2
"""

import torch
from torch import optim,nn
import visdom
from torch.utils.data import DataLoader
from PokeDataset import Pokemon
from torchvision.models import resnet152
from torchvision.models import resnet18

from util import Flatten

batchNum = 32
lr = 1e-3
epochs = 20
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.manual_seed(1234)

root ='pokemon'
resize =224

csvfile ='data.csv'
train_db = Pokemon(root, resize, 'train',csvfile)
val_db = Pokemon(root, resize, 'val',csvfile)
test_db = Pokemon(root, resize, 'test',csvfile)

train_loader = DataLoader(train_db, batch_size =batchNum,shuffle= True,num_workers=4)
val_loader = DataLoader(val_db, batch_size =batchNum,shuffle= True,num_workers=2)
test_loader = DataLoader(test_db, batch_size =batchNum,shuffle= True,num_workers=2)
viz = visdom.Visdom()

def evalute(model, loader):
    
    total =len(loader.dataset)
    correct =0
    for x,y in loader:
        
        x = x.to(device)
        y = y.to(device)
        
        with torch.no_grad():
            
            logits = model(x)
            pred = logits.argmax(dim=1)
            correct += torch.eq(pred, y).sum().float().item()
    
    acc = correct/total
    
    return acc   
        
        

def main():
    
    trained_model = resnet152(pretrained=True)
    
    model = nn.Sequential(*list(trained_model.children())[:-1],
        Flatten(),
        nn.Linear(in_features=2048, out_features=5))
    
   
    
    optimizer = optim.Adam(model.parameters(),lr =lr) 
    criteon = nn.CrossEntropyLoss()
    
    best_epoch=0,
    best_acc=0
    viz.line([0],[-1],win='train_loss',opts =dict(title='train loss'))
    viz.line([0],[-1],win='val_loss',  opts =dict(title='val_acc'))
    global_step =0
    
    
  
    for epoch in range(epochs):
        print("\n --main---: ",epoch)
        for step, (x,y) in enumerate(train_loader):
            #x:[b,3,224,224] y:[b]

             x = x.to(device)
             y = y.to(device)
             #print("\n --x---: ",x.shape)
             
             logits =model(x)
             loss = criteon(logits, y)
             #print("\n --loss---: ",loss.shape)
             optimizer.zero_grad()
             loss.backward()
             optimizer.step()
             
             viz.line(Y=[loss.item()],X=[global_step],win='train_loss',update='append')
             global_step +=1
             
        if epoch %2 ==0:
            
             val_acc = evalute(model, val_loader)
             
             if val_acc>best_acc:
                 best_acc = val_acc
                 best_epoch =epoch
                 torch.save(model.state_dict(),'best.mdl')
             print("\n val_acc ",val_acc)
             viz.line([val_acc],[global_step],win='val_loss',update='append')
             
    print('\n best acc',best_acc, "best_epoch: ",best_epoch)
    
    model.load_state_dict(torch.load('best.mdl'))
    print('loaded from ckpt')
    
    test_acc = evalute(model, test_loader)
    print('\n test acc',test_acc)
                 

if __name__ == "__main__":
    
    main()

参考:

https://blog.csdn.net/qq_44089890/article/details/130460700

课时107 迁移学习实战_哔哩哔哩_bilibili

相关推荐
lucky_lyovo34 分钟前
自然语言处理NLP---预训练模型与 BERT
人工智能·自然语言处理·bert
fantasy_arch38 分钟前
pytorch例子计算两张图相似度
人工智能·pytorch·python
AndrewHZ2 小时前
【3D重建技术】如何基于遥感图像和DEM等数据进行城市级高精度三维重建?
图像处理·人工智能·深度学习·3d·dem·遥感图像·3d重建
飞哥数智坊2 小时前
Coze实战第18讲:Coze+计划任务,我终于实现了企微资讯简报的定时推送
人工智能·coze·trae
Code_流苏3 小时前
AI热点周报(8.10~8.16):AI界“冰火两重天“,GPT-5陷入热议,DeepSeek R2模型训练受阻?
人工智能·gpt·gpt5·deepseek r2·ai热点·本周周报
赴3353 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩3 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
双翌视觉3 小时前
工业视觉检测中的常见的四种打光方式
人工智能·计算机视觉·视觉检测
念念01073 小时前
基于MATLAB多智能体强化学习的出租车资源配置优化系统设计与实现
大数据·人工智能·matlab
nonono3 小时前
深度学习——常见的神经网络
人工智能·深度学习·神经网络