[PyTorch][chapter 52][迁移学习]

前言:

迁移学习(Transfer Learning)是一种机器学习方法,它通过将一个领域中的知识和经验迁移到另一个相关领域中,来加速和改进新领域的学习和解决问题的能力。

这里面主要结合前面ResNet18 例子,详细讲解一下迁移学习的流程


一 简介

迁移学习可以通过以下几种方式实现:

1.1 基于预训练模型的迁移:

将已经在大规模数据集上预训练好的模型(如BERT、GPT等)作为一个通用的特征提取器,然后在新领域的任务上进行微调。

1.2 网络结构迁移:

将在一个领域中训练好的模型的网络结构应用到另一个领域中,并在此基础上进行微调。

1.3 特征迁移:

将在一个领域中训练好的某些特征应用到另一个领域中,并在此基础上进行微调。

word2vec

1.4 参数迁移:

将在一个领域中训练好的模型的参数应用到另一个领域中,并在此基础上进行微调。

本文主要例子用的是 参数迁移


二 Flatten

作用:

输入的向量x [batch, c, w, h]=>[batch, c*w*h]

复制代码
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 16 15:11:35 2023

@author: chengxf2
"""

import torch
from torch import optim,nn

class Flatten(nn.Module):
    
    def __init__(self):
        
        super(Flatten,self).__init__()
        
    
    def forward(self, x):
        
        a = torch.tensor(x.shape[1:])
        #dim 中 input 张量的每一行的乘积。
        shape = torch.prod(a).item()
        #print("\n ---new shape--- ",shape)
        return x.view(-1,shape)

三 迁移学习

torchvision 已经提供好了一些分类器 resnet18,resnet152, 利用其训练好的参数,把最后的分类类型更改掉。

from torchvision.models import resnet152

from torchvision.models import resnet18

注意:

现有分类器分类的类型 > = 新分类器类型,再做transfer.

才能取得好的效果.

|-------|------------|
| 分类器 | 分类类型 |
| 已有分类器 | [猫,狗,鸡,鸭】 |
| 新分类器 | [猫,狗] |

复制代码
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 16 14:56:35 2023

@author: chengxf2
"""

# -*- coding: utf-8 -*-
"""
Created on Tue Aug 15 15:38:18 2023

@author: chengxf2
"""

import torch
from torch import optim,nn
import visdom
from torch.utils.data import DataLoader
from PokeDataset import Pokemon
from torchvision.models import resnet152
from torchvision.models import resnet18

from util import Flatten

batchNum = 32
lr = 1e-3
epochs = 20
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.manual_seed(1234)

root ='pokemon'
resize =224

csvfile ='data.csv'
train_db = Pokemon(root, resize, 'train',csvfile)
val_db = Pokemon(root, resize, 'val',csvfile)
test_db = Pokemon(root, resize, 'test',csvfile)

train_loader = DataLoader(train_db, batch_size =batchNum,shuffle= True,num_workers=4)
val_loader = DataLoader(val_db, batch_size =batchNum,shuffle= True,num_workers=2)
test_loader = DataLoader(test_db, batch_size =batchNum,shuffle= True,num_workers=2)
viz = visdom.Visdom()

def evalute(model, loader):
    
    total =len(loader.dataset)
    correct =0
    for x,y in loader:
        
        x = x.to(device)
        y = y.to(device)
        
        with torch.no_grad():
            
            logits = model(x)
            pred = logits.argmax(dim=1)
            correct += torch.eq(pred, y).sum().float().item()
    
    acc = correct/total
    
    return acc   
        
        

def main():
    
    trained_model = resnet152(pretrained=True)
    
    model = nn.Sequential(*list(trained_model.children())[:-1],
        Flatten(),
        nn.Linear(in_features=2048, out_features=5))
    
   
    
    optimizer = optim.Adam(model.parameters(),lr =lr) 
    criteon = nn.CrossEntropyLoss()
    
    best_epoch=0,
    best_acc=0
    viz.line([0],[-1],win='train_loss',opts =dict(title='train loss'))
    viz.line([0],[-1],win='val_loss',  opts =dict(title='val_acc'))
    global_step =0
    
    
  
    for epoch in range(epochs):
        print("\n --main---: ",epoch)
        for step, (x,y) in enumerate(train_loader):
            #x:[b,3,224,224] y:[b]

             x = x.to(device)
             y = y.to(device)
             #print("\n --x---: ",x.shape)
             
             logits =model(x)
             loss = criteon(logits, y)
             #print("\n --loss---: ",loss.shape)
             optimizer.zero_grad()
             loss.backward()
             optimizer.step()
             
             viz.line(Y=[loss.item()],X=[global_step],win='train_loss',update='append')
             global_step +=1
             
        if epoch %2 ==0:
            
             val_acc = evalute(model, val_loader)
             
             if val_acc>best_acc:
                 best_acc = val_acc
                 best_epoch =epoch
                 torch.save(model.state_dict(),'best.mdl')
             print("\n val_acc ",val_acc)
             viz.line([val_acc],[global_step],win='val_loss',update='append')
             
    print('\n best acc',best_acc, "best_epoch: ",best_epoch)
    
    model.load_state_dict(torch.load('best.mdl'))
    print('loaded from ckpt')
    
    test_acc = evalute(model, test_loader)
    print('\n test acc',test_acc)
                 

if __name__ == "__main__":
    
    main()

参考:

https://blog.csdn.net/qq_44089890/article/details/130460700

课时107 迁移学习实战_哔哩哔哩_bilibili

相关推荐
shayudiandian2 分钟前
YOLOv8目标检测项目实战(从训练到部署)
人工智能·yolo·目标检测
陈天伟教授5 分钟前
基于学习的人工智能(4)机器学习基本框架
人工智能·学习·机器学习
studytosky19 分钟前
深度学习理论与实战:MNIST 手写数字分类实战
人工智能·pytorch·python·深度学习·机器学习·分类·matplotlib
做萤石二次开发的哈哈24 分钟前
11月27日直播预告 | 萤石智慧台球厅创新场景化方案分享
大数据·人工智能
AGI前沿27 分钟前
AdamW的继任者?AdamHD让LLM训练提速15%,性能提升4.7%,显存再省30%
人工智能·算法·语言模型·aigc
后端小肥肠1 小时前
小佛陀漫画怎么做?深扒中老年高互动赛道,用n8n流水线批量打造
人工智能·aigc·agent
是店小二呀1 小时前
本地绘图工具也能远程协作?Excalidraw+cpolar解决团队跨网画图难题
人工智能
i爱校对1 小时前
爱校对团队服务全新升级
人工智能
KL132881526931 小时前
AI 介绍的东西大概率是不会错的,包括这款酷铂达 VGS耳机
人工智能
vigel19901 小时前
人工智能的7大应用领域
人工智能