NLP——操作步骤讲义与实践链接

数据集与语料

  • 语料是NLP的生命之源,所有NLP问题都是从语料中学到数据分布的规律
  • 语料的分类:单语料,平行语料,复杂结构
  • 语料的例子:Penn Treebank, Daily Dialog, WMT-1x翻译数据集,中文闲聊数据集,中国古诗数据集
  • 语料来源:公开数据集,爬虫,社交工具埋点,数据库,上述数据集如何获取?这里 (吐槽一下,B站的这个视频讲得很一般,浪费好几个小时时间,收获甚微,作为科普快速拉一下可以)

句子理解

用计算机处理一个句子,主要包含以下几个方面:分词词性识别命名实体识别依存句法分析

分词

分词与NLP的关系

  • 分词是中文语言特有的需求,是中文NLP的基础,没有中文分词,我们对于语言很难量化,进而很难运用数学的知识去解决问题。而对于拉丁语系是不需要分词的,因为它们有空格天然的隔开

  • 中分分词(Chinese Word Segmentation)指的是将一个汉字序列切分成一个一个单独的词。分词就是将连续的字序列按照一定的规范重新组合成词序列的过程。分词操作的输入是句子,输出是词序列,如

  • 关于分词,可参阅B站上一个视频动手学中文分词,(这个视频还不错,理论部分讲得不是很细,但代码部分很细,通过debug帮助理解算法 )该系列课程讲解了三种分词算法及其实现、中文分词工具Jieba分词的用法,最后实现了一个简单的在线分词工具,内嵌了自研的三种算法以及调用Jieba分词工具,原视频给的百度链接无效,我跟做的Flask项目online_fenci资源:链接:百度网盘 提取码:ci07 。由于缺少原视频中css, js等样式文件,所有页面画风有点。。。丑,只能将就看。

词性识别

词性识别的输入是一个句子,输出是识别出的词性,例如,对于特朗普昨天在推特上攻击拜登这句话,在对其进行分词后,紧接着做词性识别,得出与词序列一一对应的词性序列,如:特朗普-名词人名(nh), 昨天-名词时间(nt),在-介词(p)

命名实体识别

依存句法分析

预处理

词向量模型------word2vec

词向量的通俗理解,如果用CBOWSkip-gram模型训练词向量,参阅这里

两种构建词向量的模式:CBOW模型与Skip-gram模型

Skip-gram模型

Skip-gram模型构建训练数据的方法如图,对于Thou shalt not make a machine in the likeness of a human mind这句话,用一个长度为5(一般为奇数)的滑窗在句中扫过,将input_word前2个词与后2个词作为output_word(或者叫target_word),构建出的数据集如下所示。

相关推荐
说私域5 分钟前
基于开源链动2+1模式AI智能名片S2B2C商城小程序的赛道力构建与品牌发展研究
人工智能·小程序
喜欢吃豆1 小时前
llama.cpp 全方位技术指南:从底层原理到实战部署
人工智能·语言模型·大模型·llama·量化·llama.cpp
e6zzseo2 小时前
独立站的优势和劣势和运营技巧
大数据·人工智能
富唯智能3 小时前
移动+协作+视觉:开箱即用的下一代复合机器人如何重塑智能工厂
人工智能·工业机器人·复合机器人
Antonio9154 小时前
【图像处理】图像的基础几何变换
图像处理·人工智能·计算机视觉
新加坡内哥谈技术5 小时前
Perplexity AI 的 RAG 架构全解析:幕后技术详解
人工智能
武子康5 小时前
AI研究-119 DeepSeek-OCR PyTorch FlashAttn 2.7.3 推理与部署 模型规模与资源详细分析
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
Sirius Wu6 小时前
深入浅出:Tongyi DeepResearch技术解读
人工智能·语言模型·langchain·aigc
忙碌5447 小时前
AI大模型时代下的全栈技术架构:从深度学习到云原生部署实战
人工智能·深度学习·架构
LZ_Keep_Running7 小时前
智能变电巡检:AI检测新突破
人工智能