机器学习|Softmax 回归的数学理解及代码解析

机器学习|Softmax 回归的数学理解及代码解析

Softmax 回归是一种常用的多类别分类算法,适用于将输入向量映射到多个类别的概率分布。在本文中,我们将深入探讨 Softmax 回归的数学原理,并提供 Python 示例代码帮助读者更好地理解和实现该算法。

Softmax 回归数学原理

Softmax 函数将输入向量的线性得分转换为每个类别的概率。给定一个输入向量 x,有如下公式计算 Softmax 函数的输出:

P ( y = j ∣ x ) = e x j ∑ k = 1 K e x k P(y=j \mid x) = \frac{e^{x_j}}{\sum_{k=1}^{K} e^{x_k}} P(y=j∣x)=∑k=1Kexkexj

其中, P ( y = j ∣ x ) P(y=j \mid x) P(y=j∣x) 表示输入向量 x 属于类别 j 的概率, x j x_j xj 是 x 的第 j 个元素, K K K 是总的类别数。

Softmax 回归示例代码

下面是使用 Python 编写的一个简单的 `Softmax 回归示例代码:

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

def softmax(z):
    exp_scores = np.exp(z)
    probs = exp_scores / np.sum(exp_scores)
    return probs

# 生成一组随机的线性得分
z = np.array([3.0, 1.0, 0.2])

# 计算 softmax 函数的输出
probs = softmax(z)

# 打印每个类别的概率
labels = ['Apple', 'Orange', 'Banana']
for label, prob in zip(labels, probs):
    print(label + ' probability:', prob)

# 绘制函数图像
x = np.arange(-10, 10, 0.1)
y = np.zeros((len(x), len(labels)))

for i, val in enumerate(x):
    z = np.array([val, 1.0, 0.2])
    probs = softmax(z)
    y[i] = probs

plt.plot(x, y[:, 0], label='Apple')
plt.plot(x, y[:, 1], label='Orange')
plt.plot(x, y[:, 2], label='Banana')
plt.xlabel('Linear Score')
plt.ylabel('Probability')
plt.title('Softmax Regression')
plt.legend()
plt.show() 

在示例代码中,我们首先定义了一个 softmax 函数,用于计算 Softmax 函数的输出。然后,我们生成了一个随机的线性得分向量 z,并调用 softmax 函数获得每个类别的概率。最后,我们打印出每个类别的概率值。

该程序绘制的函数图像

结语

通过本文,我们详细讲解了 Softmax 回归的数学原理,并提供了一个简单的 Python 示例代码展示了如何实现该算法。希望本文能够帮助读者更好地理解 Softmax 回归,并能够应用到实际问题中。

如果你对 Softmax 回归或其他机器学习算法有任何疑问或想法,请在评论区留言,期待与大家的交流讨论!

相关推荐
爱喝奶茶的企鹅2 分钟前
Ethan独立开发新品速递 | 2025-08-18
人工智能·程序员·开源
七夜zippoe2 分钟前
如何使用 AI 大语言模型解决生活中的实际小事情?
人工智能·语言模型·生活
算家计算12 分钟前
一行命令,玩转所有主流音视频格式!一站式音视频处理工具——FFmpeg本地部署教程
人工智能
音视频牛哥13 分钟前
从「行走」到「思考」:机器人进化之路与感知—决策链路的工程化实践
机器学习·机器人·音视频开发
AAA修煤气灶刘哥16 分钟前
Java+AI 驱动的体检报告智能解析:从 PDF 提取到数据落地全指南
java·人工智能·后端
AI 嗯啦24 分钟前
SQL详细语法教程(四)约束和多表查询
数据库·人工智能·sql
三块钱079438 分钟前
如何让AI视频模型(如Veo)开口说中文?一个顶级提示词的深度拆解
人工智能
轻松Ai享生活1 小时前
从0-1学习CUDA | week 1
人工智能
蒋星熠1 小时前
C++零拷贝网络编程实战:从理论到生产环境的性能优化之路
网络·c++·人工智能·深度学习·性能优化·系统架构
wayman_he_何大民1 小时前
初始机器学习算法 - 关联分析
前端·人工智能