机器学习|Softmax 回归的数学理解及代码解析

机器学习|Softmax 回归的数学理解及代码解析

Softmax 回归是一种常用的多类别分类算法,适用于将输入向量映射到多个类别的概率分布。在本文中,我们将深入探讨 Softmax 回归的数学原理,并提供 Python 示例代码帮助读者更好地理解和实现该算法。

Softmax 回归数学原理

Softmax 函数将输入向量的线性得分转换为每个类别的概率。给定一个输入向量 x,有如下公式计算 Softmax 函数的输出:

P ( y = j ∣ x ) = e x j ∑ k = 1 K e x k P(y=j \mid x) = \frac{e^{x_j}}{\sum_{k=1}^{K} e^{x_k}} P(y=j∣x)=∑k=1Kexkexj

其中, P ( y = j ∣ x ) P(y=j \mid x) P(y=j∣x) 表示输入向量 x 属于类别 j 的概率, x j x_j xj 是 x 的第 j 个元素, K K K 是总的类别数。

Softmax 回归示例代码

下面是使用 Python 编写的一个简单的 `Softmax 回归示例代码:

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

def softmax(z):
    exp_scores = np.exp(z)
    probs = exp_scores / np.sum(exp_scores)
    return probs

# 生成一组随机的线性得分
z = np.array([3.0, 1.0, 0.2])

# 计算 softmax 函数的输出
probs = softmax(z)

# 打印每个类别的概率
labels = ['Apple', 'Orange', 'Banana']
for label, prob in zip(labels, probs):
    print(label + ' probability:', prob)

# 绘制函数图像
x = np.arange(-10, 10, 0.1)
y = np.zeros((len(x), len(labels)))

for i, val in enumerate(x):
    z = np.array([val, 1.0, 0.2])
    probs = softmax(z)
    y[i] = probs

plt.plot(x, y[:, 0], label='Apple')
plt.plot(x, y[:, 1], label='Orange')
plt.plot(x, y[:, 2], label='Banana')
plt.xlabel('Linear Score')
plt.ylabel('Probability')
plt.title('Softmax Regression')
plt.legend()
plt.show() 

在示例代码中,我们首先定义了一个 softmax 函数,用于计算 Softmax 函数的输出。然后,我们生成了一个随机的线性得分向量 z,并调用 softmax 函数获得每个类别的概率。最后,我们打印出每个类别的概率值。

该程序绘制的函数图像

结语

通过本文,我们详细讲解了 Softmax 回归的数学原理,并提供了一个简单的 Python 示例代码展示了如何实现该算法。希望本文能够帮助读者更好地理解 Softmax 回归,并能够应用到实际问题中。

如果你对 Softmax 回归或其他机器学习算法有任何疑问或想法,请在评论区留言,期待与大家的交流讨论!

相关推荐
weiwenhao13 分钟前
关于 nature 编程语言
人工智能·后端·开源
神经星星14 分钟前
训练成本29.4万美元,DeepSeek-R1登Nature封面,首个通过权威期刊同行评审的主流大模型获好评
人工智能
神州问学18 分钟前
【AI洞察】别再只想着“让AI听你话”,人类也需要学习“适应AI”!
人工智能
DevUI团队38 分钟前
🚀 MateChat V1.8.0 震撼发布!对话卡片可视化升级,对话体验全面进化~
前端·vue.js·人工智能
聚客AI40 分钟前
🎉7.6倍训练加速与24倍吞吐提升:两项核心技术背后的大模型推理优化全景图
人工智能·llm·掘金·日新计划
黎燃1 小时前
当 YOLO 遇见编剧:用自然语言生成技术把“目标检测”写成“目标剧情”
人工智能
算家计算1 小时前
AI教母李飞飞团队发布最新空间智能模型!一张图生成无限3D世界,元宇宙越来越近了
人工智能·资讯
掘金一周1 小时前
Flutter Riverpod 3.0 发布,大规模重构下的全新状态管理框架 | 掘金一周 9.18
前端·人工智能·后端
用户5191495848451 小时前
C#记录类型与集合的深度解析:从默认实现到自定义比较器
人工智能·aigc
IT_陈寒5 小时前
React 18实战:7个被低估的Hooks技巧让你的开发效率提升50%
前端·人工智能·后端