机器学习|Softmax 回归的数学理解及代码解析

机器学习|Softmax 回归的数学理解及代码解析

Softmax 回归是一种常用的多类别分类算法,适用于将输入向量映射到多个类别的概率分布。在本文中,我们将深入探讨 Softmax 回归的数学原理,并提供 Python 示例代码帮助读者更好地理解和实现该算法。

Softmax 回归数学原理

Softmax 函数将输入向量的线性得分转换为每个类别的概率。给定一个输入向量 x,有如下公式计算 Softmax 函数的输出:

P ( y = j ∣ x ) = e x j ∑ k = 1 K e x k P(y=j \mid x) = \frac{e^{x_j}}{\sum_{k=1}^{K} e^{x_k}} P(y=j∣x)=∑k=1Kexkexj

其中, P ( y = j ∣ x ) P(y=j \mid x) P(y=j∣x) 表示输入向量 x 属于类别 j 的概率, x j x_j xj 是 x 的第 j 个元素, K K K 是总的类别数。

Softmax 回归示例代码

下面是使用 Python 编写的一个简单的 `Softmax 回归示例代码:

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

def softmax(z):
    exp_scores = np.exp(z)
    probs = exp_scores / np.sum(exp_scores)
    return probs

# 生成一组随机的线性得分
z = np.array([3.0, 1.0, 0.2])

# 计算 softmax 函数的输出
probs = softmax(z)

# 打印每个类别的概率
labels = ['Apple', 'Orange', 'Banana']
for label, prob in zip(labels, probs):
    print(label + ' probability:', prob)

# 绘制函数图像
x = np.arange(-10, 10, 0.1)
y = np.zeros((len(x), len(labels)))

for i, val in enumerate(x):
    z = np.array([val, 1.0, 0.2])
    probs = softmax(z)
    y[i] = probs

plt.plot(x, y[:, 0], label='Apple')
plt.plot(x, y[:, 1], label='Orange')
plt.plot(x, y[:, 2], label='Banana')
plt.xlabel('Linear Score')
plt.ylabel('Probability')
plt.title('Softmax Regression')
plt.legend()
plt.show() 

在示例代码中,我们首先定义了一个 softmax 函数,用于计算 Softmax 函数的输出。然后,我们生成了一个随机的线性得分向量 z,并调用 softmax 函数获得每个类别的概率。最后,我们打印出每个类别的概率值。

该程序绘制的函数图像

结语

通过本文,我们详细讲解了 Softmax 回归的数学原理,并提供了一个简单的 Python 示例代码展示了如何实现该算法。希望本文能够帮助读者更好地理解 Softmax 回归,并能够应用到实际问题中。

如果你对 Softmax 回归或其他机器学习算法有任何疑问或想法,请在评论区留言,期待与大家的交流讨论!

相关推荐
yLDeveloper13 分钟前
一只菜鸟学机器学习的日记:入门分布偏移
机器学习·dive into deep learning
阿龙AI日记18 分钟前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
爱写代码的小朋友18 分钟前
“数字镜像”与认知负能者:生成式AI个性化学习支持者的协同构建与伦理规制研究
人工智能
找方案23 分钟前
新型智慧城市城市大数据应用解决方案
人工智能·智慧城市
K***728443 分钟前
开源模型应用落地-工具使用篇-Spring AI-Function Call(八)
人工智能·spring·开源
Chat_zhanggong3451 小时前
K4A8G165WC-BITD产品推荐
人工智能·嵌入式硬件·算法
霍格沃兹软件测试开发1 小时前
Playwright MCP浏览器自动化指南:让AI精准理解你的命令
运维·人工智能·自动化
强化学习与机器人控制仿真2 小时前
RSL-RL:开源人形机器人强化学习控制研究库
开发语言·人工智能·stm32·神经网络·机器人·强化学习·模仿学习
网易智企2 小时前
智能玩具新纪元:一个AI能力底座开启创新“加速度”
人工智能·microsoft
咚咚王者2 小时前
人工智能之数据分析 numpy:第十二章 数据持久化
人工智能·数据分析·numpy