机器学习|Softmax 回归的数学理解及代码解析

机器学习|Softmax 回归的数学理解及代码解析

Softmax 回归是一种常用的多类别分类算法,适用于将输入向量映射到多个类别的概率分布。在本文中,我们将深入探讨 Softmax 回归的数学原理,并提供 Python 示例代码帮助读者更好地理解和实现该算法。

Softmax 回归数学原理

Softmax 函数将输入向量的线性得分转换为每个类别的概率。给定一个输入向量 x,有如下公式计算 Softmax 函数的输出:

P ( y = j ∣ x ) = e x j ∑ k = 1 K e x k P(y=j \mid x) = \frac{e^{x_j}}{\sum_{k=1}^{K} e^{x_k}} P(y=j∣x)=∑k=1Kexkexj

其中, P ( y = j ∣ x ) P(y=j \mid x) P(y=j∣x) 表示输入向量 x 属于类别 j 的概率, x j x_j xj 是 x 的第 j 个元素, K K K 是总的类别数。

Softmax 回归示例代码

下面是使用 Python 编写的一个简单的 `Softmax 回归示例代码:

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

def softmax(z):
    exp_scores = np.exp(z)
    probs = exp_scores / np.sum(exp_scores)
    return probs

# 生成一组随机的线性得分
z = np.array([3.0, 1.0, 0.2])

# 计算 softmax 函数的输出
probs = softmax(z)

# 打印每个类别的概率
labels = ['Apple', 'Orange', 'Banana']
for label, prob in zip(labels, probs):
    print(label + ' probability:', prob)

# 绘制函数图像
x = np.arange(-10, 10, 0.1)
y = np.zeros((len(x), len(labels)))

for i, val in enumerate(x):
    z = np.array([val, 1.0, 0.2])
    probs = softmax(z)
    y[i] = probs

plt.plot(x, y[:, 0], label='Apple')
plt.plot(x, y[:, 1], label='Orange')
plt.plot(x, y[:, 2], label='Banana')
plt.xlabel('Linear Score')
plt.ylabel('Probability')
plt.title('Softmax Regression')
plt.legend()
plt.show() 

在示例代码中,我们首先定义了一个 softmax 函数,用于计算 Softmax 函数的输出。然后,我们生成了一个随机的线性得分向量 z,并调用 softmax 函数获得每个类别的概率。最后,我们打印出每个类别的概率值。

该程序绘制的函数图像

结语

通过本文,我们详细讲解了 Softmax 回归的数学原理,并提供了一个简单的 Python 示例代码展示了如何实现该算法。希望本文能够帮助读者更好地理解 Softmax 回归,并能够应用到实际问题中。

如果你对 Softmax 回归或其他机器学习算法有任何疑问或想法,请在评论区留言,期待与大家的交流讨论!

相关推荐
volcanical1 分钟前
Dataset Distillation with Attention Labels for Fine-tuning BERT
人工智能·深度学习·bert
L_cl1 分钟前
【NLP 17、NLP的基础——分词】
人工智能·自然语言处理
西西弗Sisyphus3 分钟前
大型语言模型(LLMs)演化树 Large Language Models
人工智能·语言模型·自然语言处理·大模型
车载诊断技术2 小时前
电子电气架构 --- 什么是EPS?
网络·人工智能·安全·架构·汽车·需求分析
KevinRay_2 小时前
Python超能力:高级技巧让你的代码飞起来
网络·人工智能·python·lambda表达式·列表推导式·python高级技巧
跃跃欲试-迪之2 小时前
animatediff 模型网盘分享
人工智能·stable diffusion
Captain823Jack3 小时前
nlp新词发现——浅析 TF·IDF
人工智能·python·深度学习·神经网络·算法·自然语言处理
被制作时长两年半的个人练习生3 小时前
【AscendC】ReduceSum中指定workLocal大小时如何计算
人工智能·算子开发·ascendc
Captain823Jack3 小时前
w04_nlp大模型训练·中文分词
人工智能·python·深度学习·神经网络·算法·自然语言处理·中文分词
Black_mario3 小时前
链原生 Web3 AI 网络 Chainbase 推出 AVS 主网, 拓展 EigenLayer AVS 应用场景
网络·人工智能·web3