R语言实现神经网络(1)

复制代码
#R语言实现神经网络
library(neuralnet)
library(caret)
library(MASS)
library(vcd)
data(shuttle)
str(shuttle)#因变量use;
table1<-structable(wind+magn~use,shuttle)
mosaic(table1,shading=T)
mosaic(use~error+vis,shuttle)
prop.table(table(shuttle$use,shuttle$stability))#用来计算两个变量 shuttle$use 和 shuttle$stability 之间频率表的函数
#数据准备
#虚拟变量
dummies<-dummyVars(use~.,shuttle,fullRank=T)
#虚拟变量预测现有数据
shuttle.2=as.data.frame(predict(dummies,newdata=shuttle))
names(shuttle.2)
shuttle.2$use<-ifelse(shuttle$use=="auto",1,0)
#拆分测试集和训练集
set.seed(123)
trainIndex<-createDataPartition(shuttle.2$use,p=0.7,list=F)
shuttleTrain<-shuttle.2[trainIndex,]
shuttleTest<-shuttle.2[-trainIndex,]
#模型构建
n<-names(shuttleTrain)
form<-as.formula(paste("use~",paste(n[!n %in% "use"],collapse = "+")))
fit<-neuralnet(form,data=shuttleTrain,
               hidden = c(3, 3),#第一个隐藏层有3个神经元,第二个隐藏层有3个神经元
               err.fct = "ce",#默认sse,因为此处是二值结果,所以选择ce
               linear.output = F,#是否忽略act.fct
               likelihood=TRUE)
fit$result.matrix
plot(fit)
par(mfrow=c(1,2))
gwplot(fit,selected.covariate="magn.Out")
gwplot(fit,selected.covariate="wind.tail")
#预测
resultsTrain<-compute(fit,shuttleTrain[,1:10])
predTrain<-resultsTrain$net.result
predTrain<-ifelse(predTrain>=0.5,1,0)
table(predTrain,shuttleTrain$use)
#在测试集上的结果
resultsTest <- compute(fit, shuttleTest[,1:10])
predTest <- resultsTest$net.result
predTest <- ifelse(predTest >= 0.5, 1, 0)
table(predTest, shuttleTest$use)
which(predTest == 0 & shuttleTest$use ==1)

参考文献:《精通机器学习-基于R(第二版)》

相关推荐
追逐☞1 小时前
机器学习(10)——神经网络
人工智能·神经网络·机器学习
娃娃略1 小时前
【AI模型学习】双流网络——更强大的网络设计
网络·人工智能·pytorch·python·神经网络·学习
COOCC18 小时前
探秘卷积神经网络:深度学习的图像识别利器
人工智能·深度学习·神经网络·目标检测·机器学习·cnn
欲掩8 小时前
神经网络与深度学习第四章-前馈神经网络
人工智能·深度学习·神经网络
沅_Yuan1 天前
基于贝叶斯优化的Transformer多输入单输出回归预测模型Bayes-Transformer【MATLAB】
神经网络·matlab·回归·贝叶斯·transformer·回归预测
Chh07151 天前
《R语言SCI期刊论文绘图专题计划》大纲
开发语言·r语言
小宋加油啊1 天前
深度学习小记(包括pytorch 还有一些神经网络架构)
pytorch·深度学习·神经网络
沛沛老爹1 天前
从线性到非线性:简单聊聊神经网络的常见三大激活函数
人工智能·深度学习·神经网络·激活函数·relu·sigmoid·tanh
何大春1 天前
【视频时刻检索】Text-Video Retrieval via Multi-Modal Hypergraph Networks 论文阅读
论文阅读·深度学习·神经网络·计算机视觉·视觉检测·论文笔记
每天都要写算法(努力版)1 天前
【神经网络与深度学习】训练集与验证集的功能解析与差异探究
人工智能·深度学习·神经网络