MATLAB灰狼优化算法(GWO)改进物理信息神经网络(PINN)光伏功率预测

核心理念

传统PINN训练常面临梯度消失、收敛慢、易陷局部最优等问题。GWO作为一种高效的群体智能优化算法,其强大的全局探索能力可以优化PINN的关键参数(如损失权重、网络初始权重等),从而使PINN更快、更稳定地找到符合物理规律的解。

一、 整体框架:GWO-PINN混合模型

工作流程:

初始化:将PINN的关键可调参数(如损失权重λ、网络权重初始值等)编码为灰狼个体的位置向量。

迭代优化:

每个灰狼个体代表一组PINN参数。

用该组参数短暂训练PINN(例如几个epoch),在验证集上计算综合损失(数据损失 + 物理损失)作为该灰狼的适应度值。

根据适应度值,更新α、β、δ狼(最优的三个解)。

整个狼群向这三头领导狼的位置移动(更新参数),完成探索与开发。

最终训练:GWO优化结束后,将得到的最优参数赋给PINN,再进行一次完整的、充分的训练,得到最终预测模型。

二、 关键改进点与实施方案

  1. 利用GWO优化PINN损失函数的权重
    问题:PINN的总损失
    L = L_data + λ * L_physics
    中,权重λ极大影响训练平衡。λ太小则物理约束弱,太大则数据拟合差。

GWO优化:将λ作为优化变量。GWO为每个候选λ计算PINN的验证集损失,自动寻找到能使模型兼顾精度与物理一致性的最佳λ。

  1. 利用GWO优化PINN的神经网络的初始权重
    问题:糟糕的初始化会导致训练失败。

GWO优化:将神经网络初始权重矩阵"展平"并编码为灰狼的超长位置向量。GWO在全局空间搜索更优的初始化点,为后续的梯度下降提供极佳的起点,大幅提升收敛成功率。

  1. 优化PINN的结构或超参数
    问题:网络层数、神经元数、激活函数类型等超参数依赖经验。

GWO优化:可以将这些离散或连续的超参数联合编码,进行智能搜索。

  1. 针对光伏系统的核心物理约束设计
    这是PINN预测优于纯数据驱动模型的关键。必须在损失函数中嵌入光伏发电的物理机理:

能量平衡方程:

L_physics1 = ||P_pv - η * A * G * f(T, G)||

其中,

P_pv

是模型预测功率,

η

是组件效率,

A

是面积,

G

是辐照度,

T

是温度。

f(T, G)

是考虑温度、辐照度对效率影响的函数(可从光伏板手册获得)。

功率曲线的平滑性约束:

L_physics2 = ||∂P_pv/∂G - g(P_pv, G)||

确保预测功率随辐照度变化的趋势符合典型的S型曲线规律,避免非物理振荡。

环境变量关系约束:

L_physics3 = ||P_pv(T+ΔT, G) - P_pv(T, G) - k * ΔT||

引入温度系数

k

,使模型学习功率随温度变化的线性关系。

总结

将GWO与PINN结合,为光伏功率预测提供了一条融合数据智能与物理规律的创新路径。通过GWO的全局优化能力,可以自动、高效地配置PINN,使其既能从数据中学习复杂模式,又能严格遵循基本的物理定律,从而有望获得精度更高、泛化更强、可解释性更好的预测模型。

完整代码私信回复MATLAB灰狼优化算法(GWO)改进物理信息神经网络(PINN)光伏功率预测

相关推荐
代码游侠2 小时前
学习笔记——ESP8266 WiFi模块
服务器·c语言·开发语言·数据结构·算法
倦王2 小时前
力扣日刷26110
算法·leetcode·职场和发展
涛涛北京2 小时前
【算法比较】
算法
yuniko-n2 小时前
【牛客面试 TOP 101】链表篇(二)
算法·链表·职场和发展
少许极端2 小时前
算法奇妙屋(二十三)-完全背包问题(动态规划)
java·算法·动态规划·完全背包
CoderCodingNo2 小时前
【GESP】C++五级练习(贪心思想考点) luogu-P1115 最大子段和
开发语言·c++·算法
Q741_1472 小时前
C++ 队列 宽度优先搜索 BFS 力扣 429. N 叉树的层序遍历 每日一题
c++·算法·leetcode·bfs·宽度优先
txinyu的博客2 小时前
make_shraed & make_unique 替代了new ? 什么场景使用new
开发语言·c++·算法
jinmo_C++2 小时前
Leetcode矩阵
算法·leetcode·矩阵