Harvard transformer NLP 模型 openNMT 简介入门

项目网址:

OpenNMT - Open-Source Neural Machine Translation

logo:

一,从应用的层面先跑通 Harvard transformer

GitHub - harvardnlp/annotated-transformer: An annotated implementation of the Transformer paper.

复制代码
​

git clone https://github.com/harvardnlp/annotated-transformer.git
cd annotated-transformer/

​
  1. 环境搭建

    conda create --name ilustrate_transformer_env python=3.9
    conda activate ilustrate_transformer_env
    pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

问题:TypeError: issubclass() arg 1 must be a class

原因: 这是由python中的后端包之一的兼容性问题引起的问题,包"pydantic"

执行下面命令可以解决

复制代码
python -m pip install -U pydantic spacy

会遇到下载不到数据的问题,因为有个网址废弃了:www.quest......

改成最新版本的torchtext的内容即可:

/home/hipper/anaconda3/envs/ilustrate_transformer_env/lib/python3.9/site-packages/torchtext/datasets/multi30k.py

python 复制代码
 13 '''LL::
 14 URL = {
 15     "train": r"http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/training.tar.gz",
 16     "valid": r"http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz",
 17     "test": r"http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/mmt16_task1_test.tar.gz",
 18 }
 19
 20 MD5 = {
 21     "train": "20140d013d05dd9a72dfde46478663ba05737ce983f478f960c1123c6671be5e",
 22     "valid": "a7aa20e9ebd5ba5adce7909498b94410996040857154dab029851af3a866da8c",
 23     "test": "0681be16a532912288a91ddd573594fbdd57c0fbb81486eff7c55247e35326c2",
 24 }
 25 '''
 26 # TODO: Update URL to original once the server is back up (see https://github.com/pytorch/text/issues/1756)
 27 URL = {
 28     "train": r"https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/training.tar.gz",
 29     "valid": r"https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/validation.tar.gz",
 30     "test": r"https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/mmt16_task1_test.tar.gz",
 31 }
 32
 33 MD5 = {
 34     "train": "20140d013d05dd9a72dfde46478663ba05737ce983f478f960c1123c6671be5e",
 35     "valid": "a7aa20e9ebd5ba5adce7909498b94410996040857154dab029851af3a866da8c",
 36     "test": "6d1ca1dba99e2c5dd54cae1226ff11c2551e6ce63527ebb072a1f70f72a5cd36",
 37 }

运行:

参考:

《The Annotated Transformer》翻译------注释和代码实现《Attention Is All You Need》_神洛华的博客-CSDN博客

图解transformer | The Illustrated Transformer_Ann's Blog的博客-CSDN博客

GitHub - harvardnlp/annotated-transformer: An annotated implementation of the Transformer paper.

OpenNMT - Open-Source Neural Machine Translation

相关推荐
是Dream呀20 小时前
Python从0到100(一百):基于Transformer的时序数据建模与实现详解
开发语言·python·transformer
一个处女座的程序猿1 天前
Transformer 之LCW/TTT-E2E:《End-to-End Test-Time Training for Long Context》翻译与解读
llm·transformer·lcw·ttt-e2e
石去皿1 天前
Transformer超全通关笔记:从「Attention 为什么 work」到「工业级落地」的数学+代码+工程万字解析
笔记·深度学习·transformer
zzz海羊1 天前
【CS336】Transformer|2-BPE算法 -> Tokenizer封装
深度学习·算法·语言模型·transformer
JAI科研1 天前
MICCAI 2025 IUGC 图像超声关键点检测及超声参数测量挑战赛
人工智能·深度学习·算法·计算机视觉·自然语言处理·视觉检测·transformer
鹿角片ljp2 天前
Engram 论文精读:用条件记忆模块重塑稀疏大模型
python·自然语言处理·nlp
高洁012 天前
AIGC技术与进展(1)
深度学习·算法·机器学习·transformer·知识图谱
Hcoco_me2 天前
大模型面试题76:强化学习中on-policy和off-policy的区别是什么?
人工智能·深度学习·算法·transformer·vllm
杀生丸学AI2 天前
【视频生成】HY-World 1.5:实时延迟和几何一致的交互式世界模型系统(腾讯混元)
人工智能·深度学习·3d·音视频·transformer·三维重建
M宝可梦3 天前
Engram: DeepSeek最新工作解读
transformer·memory·hash·moe·记忆·deepseek·engram