大模型推理(九):采样温度

舍入误差只是影响模型输出的很小的一部分,更常见的大部分变化来自于概率、随机性和上下文的相互作用。

在生成回复的最后阶段,模型不会选择一个"预先确定"的词,而是会计算词汇表的概率分布:

p(w_i \mid \text{context}) = \frac{e^{z_i / T}}{\sum_j e^{z_j / T}}

其中 z_i 是模型的 logits(分数),T 是温度参数。然后模型会从这个分布中抽样,换句话说,模型会掷一个加权骰子。

  • 当 T = 1 时:你得到了正常的softmax分布。

  • 当 T < 1 时:除以较小的数会使指数更陡峭,模型变得更有信心,几乎是确定性的。

  • 当 T > 1 时:除以较大的数会使分布更平坦,随机性更强,后续单词的多样性也更强。

因此,如果两个词的概率接近,比如:p("美丽的") = 0.32,p("可爱的") = 0.30。那么它们都可能被选中,句子的表达方式也会略有不同。即使整体含义保持不变,每次穿过语言空间的路径也可能不同。

然而,每个新词的产生都会改变输入语境!一旦选择了不同的词,所有后续的概率都会随之变化。这是一种混沌敏感性:微小的初始差异会导致后续语境的巨大变化,就像概率空间中的蝴蝶效应一样。

这就是为什么对同一个问题进行两次运行,听起来可能都像是同一个模型在说话,但永远不会完全相同。

采样温度 T 具有受控随机性。如果将温度 T 设为 0,模型会停止采样,并始终选择最有可能的下一个词。这就是确定性模式,每次都会得到相同的措辞。更高的 T 值会增加多样性和创造性,但可预测性会降低。

因此,这种明显的不一致性并非 bug,它实际上是设计的一部分,旨在平衡稳定性和自发性。

一些次要技术原因也影响输出结果,包括:GPU/TPU 硬件上的浮点不确定性可能会导致矩阵运算出现微小的变​​化;并行性,不同的线程或计算分片以略微不同的顺序完成;训练中的自适应优化可能会导致权重更新出现细微的差异,等等。所有这些微观效应都会累积成模型输出的结果差异。

相关推荐
下午见。9 分钟前
深入理解C语言共用体/联合体(union):大小计算与大小端判断实战
c语言·笔记·学习
CAE3203 小时前
基于机器学习的智能垃圾短信检测超强系统
人工智能·python·机器学习·自然语言处理·垃圾短信拦截
im_AMBER6 小时前
React 17
前端·javascript·笔记·学习·react.js·前端框架
报错小能手7 小时前
C++笔记——STL map
c++·笔记
出门吃三碗饭9 小时前
Transformer前世今生——使用pytorch实现多头注意力(八)
人工智能·深度学习·transformer
lkbhua莱克瓦249 小时前
Java基础——集合进阶3
java·开发语言·笔记
QT 小鲜肉9 小时前
【QT/C++】Qt定时器QTimer类的实现方法详解(超详细)
开发语言·数据库·c++·笔记·qt·学习
MeowKnight9589 小时前
【Qt】Qt实践记录3——UDP通信
笔记·qt
REDcker9 小时前
前端打包工具 - Rollup 打包工具笔记
前端·笔记
lkbhua莱克瓦2410 小时前
Java基础——集合进阶用到的数据结构知识点1
java·数据结构·笔记·github