NLP | 论文摘要文本分类

基于论文摘要的文本分类与关键词抽取挑战赛
​​​​​​2023 iFLYTEK A.I.开发者大赛-讯飞开放平台

环境需求:Anaconda-JupyterNotebook,或者百度AIStudio

赛题解析:

【文本二分类任务】根据论文摘要等信息理解,将论文划分为0-1两类别之一。

【文本关键词识别任务】从给定的论文中识别和提取出与论文内容相关的关键词。

数据样例:title、author、Abstract、Keywords、[label] 0-1

一键运行的时候先把csv删了(是运行结果)

安装nltk 【更换镜像源避免安装出错】

python 复制代码
!pip install nltk -i http://mirrors.aliyun.com/pypi/simple/  --trusted-host mirrors.aliyun.com
python 复制代码
# 导入pandas用于读取表格数据
import pandas as pd

# 导入BOW(词袋模型)
from sklearn.feature_extraction.text import CountVectorizer
#可以替换为TfidfVectorizer(TF-IDF(词频-逆文档频率))
#注意上下文要同时修改,亲测后者效果更佳

# 导入LogisticRegression回归模型
from sklearn.linear_model import LogisticRegression

# 过滤警告消息
from warnings import simplefilter
from sklearn.exceptions import ConvergenceWarning
simplefilter("ignore", category=ConvergenceWarning)


# 读取数据集
train = pd.read_csv('/home/aistudio/data/data231041/train.csv')
train['title'] = train['title'].fillna('')
train['abstract'] = train['abstract'].fillna('')

test = pd.read_csv('/home/aistudio/data/data231041/testB.csv')
test['title'] = test['title'].fillna('')
test['abstract'] = test['abstract'].fillna('')


# 提取文本特征,生成训练集与测试集
train['text'] = train['title'].fillna('') + ' ' +  train['author'].fillna('') + ' ' + train['abstract'].fillna('')+ ' ' + train['Keywords'].fillna('')
test['text'] = test['title'].fillna('') + ' ' +  test['author'].fillna('') + ' ' + test['abstract'].fillna('')

vector = CountVectorizer().fit(train['text'])
train_vector = vector.transform(train['text'])
test_vector = vector.transform(test['text'])


# 引入模型
model = LogisticRegression()

# 开始训练,这里可以考虑修改默认的batch_size与epoch来取得更好的效果
model.fit(train_vector, train['label'])

# 利用模型对测试集label标签进行预测
test['label'] = model.predict(test_vector)
test['Keywords'] = test['title'].fillna('')
test[['uuid','Keywords','label']].to_csv('submit_task1.csv', index=None)

ndarray.finall()方法:填充空值

pandas数据处理常用命令_ndarray fillna_hellosc01的博客-CSDN博客

Basedline的方法:BOW词袋提取特征-LR逻辑回归-进行预测

改进方法:TF-IDF,SVM,epoches

python 复制代码
# TfidfVectorizer(TF-IDF(词频-逆文档频率))
from sklearn.feature_extraction.text import TfidfVectorizer
python 复制代码
# 导入支持向量机分类器
from sklearn.svm import SVC

#创建SVM训练模型 
model = SVC(kernel='linear', C=1)

# 利用模型对测试集label标签进行预测
test['label'] = model.predict(test_vector)
test['Keywords'] = test['title'].fillna('')
test[['uuid','Keywords','label']].to_csv('submit_task2.csv', index=None)

by ライト

相关推荐
胡耀超10 小时前
Umi-OCR 的 Docker安装(win制作镜像,Linux(Ubuntu Server 22.04)离线部署)
linux·深度学习·ubuntu·docker·容器·nlp·ocr
用户0956691600918 小时前
使用modelscope在本地部署文本情感分析模型并对外提供api接口
nlp
uncle_ll19 小时前
李宏毅NLP-9-语音转换
自然语言处理·nlp·语音识别·tts·语音变换
国服第二切图仔2 天前
【源力觉醒 创作者计划】文心开源大模型ERNIE-4.5系列与Qwen/DeepSeek/GPT-4横向深度测评报告
百度·开源·文心大模型·paddle·gitcode
国服第二切图仔4 天前
基于文心开源大模型ERNIE-4.5-0.3B-Paddle私有化部署并构建一个企业智能客服系统
百度·开源·智能客服·知识库·文心大模型·paddle·gitcode
陈敬雷-充电了么-CEO兼CTO5 天前
主流大模型Agent框架 AutoGPT详解
人工智能·python·gpt·ai·chatgpt·nlp·aigc
Accelemate6 天前
Bert进行LoRA微调详细流程(附代码)
nlp
LucianaiB7 天前
百度开源文心4.5系列开源21款模型,实测 ERNIE-4.5-VL-28B-A3B-Paddle 多项评测结果超 Qwen3-235B-A22B
百度·开源·文心大模型·paddle·gitcode
**梯度已爆炸**7 天前
NLP文本预处理
人工智能·深度学习·nlp