图像去雨-雨线清除-图像处理-(计算机作业附代码)

背景

多年来,图像去雨已经被广泛研究,使用传统方法和基于学习的方法。然而,传统方法如高斯混合模型和字典学习方法耗时,并且无法很好地处理受到严重雨滴影响的图像块。

算法

通过考虑雨滴条状特性和角度分布,这个问题可以得到很好的解决。在本文中,通过引入任意方向的方向梯度算子,我们提出了一种高效且稳健的基于约束的模型用于单幅图像去雨。此外,一个雨滴条状密度度量被应用于将所提出的模型推广到轻雨和重雨的情况。

通过建立分层结构,是的图像由:

bash 复制代码
I=B+R

即图像由背景层+雨层构成。如何将雨层与背景层隔离,面临着巨大的逻辑处理。通过大量实验,我们得出,雨层在图像中高亮且有规律的存在。通过构建雨线长、宽、角度信息。加之考虑其亮度通道,我们可以完美提取出雨层,由此完成了图像去雨任务。

bash 复制代码
#qq1309399183
Theta_cluster = []#
    for i in range(1,num,1):
        b=np.argwhere(L==i)
        h,_=b.shape
        c=b-np.mean(b,0)

        c_T=c.T

        A=np.zeros((2,2))

        for i in range(2):
            for j in range(2):

                A[i,j]=np.sum(c_T[i,:]*c[:,j])

        W,V=np.linalg.eig(A)   #W特征值 V特征向量
#         lambda1 = abs(W[0])
#         lambda2 = abs(W[1])
        lambda1 = min(abs(W[0]),abs(W[1]))
        lambda2 = max(abs(W[0]),abs(W[1]))

代码运行

1.更换图像输入路径

2.然后点击运行即可

bash 复制代码
python derain.py

结论

在合成数据集上的大量实验证明,所提出的模型在需要更少时间的情况下优于GMM和JCAS。此外,在真实场景中,与最先进的基于学习的方法相比,所提出的方法获得了更好的泛化能力。

相关推荐
阿坡RPA7 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049937 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心7 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI9 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c10 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20510 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清11 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh11 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员11 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物11 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技