图像去雨-雨线清除-图像处理-(计算机作业附代码)

背景

多年来,图像去雨已经被广泛研究,使用传统方法和基于学习的方法。然而,传统方法如高斯混合模型和字典学习方法耗时,并且无法很好地处理受到严重雨滴影响的图像块。

算法

通过考虑雨滴条状特性和角度分布,这个问题可以得到很好的解决。在本文中,通过引入任意方向的方向梯度算子,我们提出了一种高效且稳健的基于约束的模型用于单幅图像去雨。此外,一个雨滴条状密度度量被应用于将所提出的模型推广到轻雨和重雨的情况。

通过建立分层结构,是的图像由:

bash 复制代码
I=B+R

即图像由背景层+雨层构成。如何将雨层与背景层隔离,面临着巨大的逻辑处理。通过大量实验,我们得出,雨层在图像中高亮且有规律的存在。通过构建雨线长、宽、角度信息。加之考虑其亮度通道,我们可以完美提取出雨层,由此完成了图像去雨任务。

bash 复制代码
#qq1309399183
Theta_cluster = []#
    for i in range(1,num,1):
        b=np.argwhere(L==i)
        h,_=b.shape
        c=b-np.mean(b,0)

        c_T=c.T

        A=np.zeros((2,2))

        for i in range(2):
            for j in range(2):

                A[i,j]=np.sum(c_T[i,:]*c[:,j])

        W,V=np.linalg.eig(A)   #W特征值 V特征向量
#         lambda1 = abs(W[0])
#         lambda2 = abs(W[1])
        lambda1 = min(abs(W[0]),abs(W[1]))
        lambda2 = max(abs(W[0]),abs(W[1]))

代码运行

1.更换图像输入路径

2.然后点击运行即可

bash 复制代码
python derain.py

结论

在合成数据集上的大量实验证明,所提出的模型在需要更少时间的情况下优于GMM和JCAS。此外,在真实场景中,与最先进的基于学习的方法相比,所提出的方法获得了更好的泛化能力。

相关推荐
2601_949593652 分钟前
CANN加速人脸检测推理:多尺度特征金字塔与锚框优化
人工智能
小刘的大模型笔记4 分钟前
大模型LoRA微调全实战:普通电脑落地,附避坑手册
人工智能·电脑
乾元4 分钟前
身份与访问:行为生物识别(按键习惯、移动轨迹)的 AI 建模
运维·网络·人工智能·深度学习·安全·自动化·安全架构
happyprince4 分钟前
2026年02月07日全球AI前沿动态
人工智能
啊阿狸不会拉杆5 分钟前
《机器学习导论》第 7 章-聚类
数据结构·人工智能·python·算法·机器学习·数据挖掘·聚类
Java后端的Ai之路5 分钟前
【AI大模型开发】-AI 大模型原理深度解析与 API 实战(建议收藏!!!)
人工智能·ai·科普·ai大模型·llm大模型
禁默5 分钟前
从图像预处理到目标检测:Ops-CV 助力 CV 任务在昇腾 NPU 上高效运行
人工智能·目标检测·目标跟踪·cann
pp起床9 分钟前
Gen_AI 第四课 模型评估
人工智能
zhangshuang-peta10 分钟前
人工智能代理团队在软件开发中的协同机制
人工智能·ai agent·mcp·peta
love you joyfully11 分钟前
告别“人多力量大”误区:看AI团队如何通过奖励设计实现协作韧性
人工智能·深度学习·神经网络·多智能体