图像去雨-雨线清除-图像处理-(计算机作业附代码)

背景

多年来,图像去雨已经被广泛研究,使用传统方法和基于学习的方法。然而,传统方法如高斯混合模型和字典学习方法耗时,并且无法很好地处理受到严重雨滴影响的图像块。

算法

通过考虑雨滴条状特性和角度分布,这个问题可以得到很好的解决。在本文中,通过引入任意方向的方向梯度算子,我们提出了一种高效且稳健的基于约束的模型用于单幅图像去雨。此外,一个雨滴条状密度度量被应用于将所提出的模型推广到轻雨和重雨的情况。

通过建立分层结构,是的图像由:

bash 复制代码
I=B+R

即图像由背景层+雨层构成。如何将雨层与背景层隔离,面临着巨大的逻辑处理。通过大量实验,我们得出,雨层在图像中高亮且有规律的存在。通过构建雨线长、宽、角度信息。加之考虑其亮度通道,我们可以完美提取出雨层,由此完成了图像去雨任务。

bash 复制代码
#qq1309399183
Theta_cluster = []#
    for i in range(1,num,1):
        b=np.argwhere(L==i)
        h,_=b.shape
        c=b-np.mean(b,0)

        c_T=c.T

        A=np.zeros((2,2))

        for i in range(2):
            for j in range(2):

                A[i,j]=np.sum(c_T[i,:]*c[:,j])

        W,V=np.linalg.eig(A)   #W特征值 V特征向量
#         lambda1 = abs(W[0])
#         lambda2 = abs(W[1])
        lambda1 = min(abs(W[0]),abs(W[1]))
        lambda2 = max(abs(W[0]),abs(W[1]))

代码运行

1.更换图像输入路径

2.然后点击运行即可

bash 复制代码
python derain.py

结论

在合成数据集上的大量实验证明,所提出的模型在需要更少时间的情况下优于GMM和JCAS。此外,在真实场景中,与最先进的基于学习的方法相比,所提出的方法获得了更好的泛化能力。

相关推荐
Gloria_niki几秒前
图像分割深度学习学习总结
人工智能
武子康29 分钟前
AI研究-118 具身智能 Mobile-ALOHA 解读:移动+双臂模仿学习的开源方案(含论文/代码/套件链接)
人工智能·深度学习·学习·机器学习·ai·开源·模仿学习
长桥夜波1 小时前
机器学习日报12
人工智能·机器学习
AI柠檬1 小时前
机器学习:数据集的划分
人工智能·算法·机器学习
诸葛务农1 小时前
光刻胶分类与特性——g/i线光刻胶及东京应化TP-3000系列胶典型配方(上)
人工智能·材料工程
mm-q29152227291 小时前
YOLOv5(PyTorch)目标检测实战:TensorRT加速部署!训练自己的数据集(Ubuntu)——(人工智能、深度学习、机器学习、神经网络)
人工智能·深度学习·机器学习
搞科研的小刘选手1 小时前
【多所高校合作】第四届图像处理、计算机视觉与机器学习国际学术会议(ICICML 2025)
图像处理·人工智能·机器学习·计算机视觉·数据挖掘·人脸识别·人机交互
FreeCode1 小时前
LangChain1.0智能体开发:消息组件(Messages)
人工智能·langchain·agent
视觉AI1 小时前
为什么 transformers 要 import TensorFlow
人工智能·tensorflow·neo4j
Coovally AI模型快速验证1 小时前
未来已来:从 CVPR & ICCV 观察 2025→2026 年计算机视觉的七大走向
人工智能·深度学习·目标检测·计算机视觉·stable diffusion