LangChain手记 Chains

整理并翻译自DeepLearning.AI×LangChain的官方课程:Chains(源代码可见)

Chains

直译链,表达的意思更像是对话链,对话链的背后是思维链

LLM Chain(LLM链)

首先介绍了一个最简单的例子,LLM Chain:

将一个大语言模型和prompt模板组合起来调用LLMChain,即可得到一个LLMChain对象,该对象的run实现的功能即给定输入自动使用prompt模板生成prompt,调用LLM得到回复。

Sequential Chains(顺序链)

顺序链是另外一种类型的链,它的基本思想是以一个链的输出是下一个链的输入这种方式组合的多个链。

目前有2种类型的顺序链:

  1. SimpleSequentialChain:单个输入/输出组合
  2. SequentialChain:多个输入输出组合

SimpleSequentialChain


调用SimpleSequentialChain,传入两个构建好的LLM Chain即可构建一个顺序链,第一个LLM Chain的输出是第二个LLM Chain的输入,同样也可以指定verbose=true将打印对话历史。

图示如下:

SequentialChain

第一个chain将review翻译为英文,第二个chain则提取摘要。

第三个chain识别review的类型。

第四个chain使用指定语言类型和摘要生成回复。

注意点是这些chain里面的变量名称要对齐,否则会报错。

即将构建的顺序链如下图所示:

运行一下:

结果:

视频可能看不太清楚,整条链的输入输出的依赖关系是依靠每一个子链都设置一个output_key,在下一个链的prompt模板里以{output_key}的形式指定来实现的,写python的朋友估计已经习以为常了,其他语言的小伙伴可能需要点时间思考,如下图:

Router Chain 路由链

先决定输入要分发到哪个子链,再分发到对应的子链:

定义回答多个学科的多个prompt模板:

为每个学科的prompt模板添加一些说明信息:

为了实现路由链,引入了MultiPromptChainLLMRouterChain

定义LLM,训练prompt模板列表,构建子链:

再构建一个默认链(用来兜底):

定义路由提示词模板:

定义路由链(注意output_parser指定的是RouterOutputParser对象):

现在,组合起来构建路由链:

python 复制代码
chain = MultiPromptChain(router_chain=router_chain, 
                         destination_chains=destination_chains, 
                         default_chain=default_chain, verbose=True
                        )

尝试运行一下物理题:

尝试运行一下数学题:

如果输入一个不属于路由内的学科,比如下面的生物,则会兜底走默认链,由于GPT也具备生物学知识,所以也可以给出有效回答:

相关推荐
MidJourney中文版7 分钟前
深度报告:中老年AI陪伴机器人需求分析
人工智能·机器人
王上上34 分钟前
【论文阅读41】-LSTM-PINN预测人口
论文阅读·人工智能·lstm
智慧化智能化数字化方案1 小时前
69页全面预算管理体系的框架与落地【附全文阅读】
大数据·人工智能·全面预算管理·智慧财务·智慧预算
PyAIExplorer1 小时前
图像旋转:从原理到 OpenCV 实践
人工智能·opencv·计算机视觉
Wilber的技术分享1 小时前
【机器学习实战笔记 14】集成学习:XGBoost算法(一) 原理简介与快速应用
人工智能·笔记·算法·随机森林·机器学习·集成学习·xgboost
19891 小时前
【零基础学AI】第26讲:循环神经网络(RNN)与LSTM - 文本生成
人工智能·python·rnn·神经网络·机器学习·tensorflow·lstm
burg_xun1 小时前
【Vibe Coding 实战】我如何用 AI 把一张草图变成了能跑的应用
人工智能
酌沧2 小时前
AI做美观PPT:3步流程+工具测评+避坑指南
人工智能·powerpoint
狂师2 小时前
啥是AI Agent!2025年值得推荐入坑AI Agent的五大工具框架!(新手科普篇)
人工智能·后端·程序员
星辰大海的精灵2 小时前
使用Docker和Kubernetes部署机器学习模型
人工智能·后端·架构