CoordAtt注意力网络结构

源码:

python 复制代码
import torch
import torch.nn as nn
import math
import torch.nn.functional as F

class h_sigmoid(nn.Module):
    def __init__(self, inplace=True):
        super(h_sigmoid, self).__init__()
        self.relu = nn.ReLU6(inplace=inplace)

    def forward(self, x):
        return self.relu(x + 3) / 6

class h_swish(nn.Module):
    def __init__(self, inplace=True):
        super(h_swish, self).__init__()
        self.sigmoid = h_sigmoid(inplace=inplace)

    def forward(self, x):
        return x * self.sigmoid(x)

class CoordAtt(nn.Module):
    def __init__(self, inp, oup, reduction=32):
        super(CoordAtt, self).__init__()
        self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
        self.pool_w = nn.AdaptiveAvgPool2d((1, None))

        mip = max(8, inp // reduction)

        self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(mip)
        self.act = h_swish()
        
        self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
        self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
        

    def forward(self, x):
        identity = x
        
        n,c,h,w = x.size()
        x_h = self.pool_h(x)
        x_w = self.pool_w(x).permute(0, 1, 3, 2)

        y = torch.cat([x_h, x_w], dim=2)
        y = self.conv1(y)
        y = self.bn1(y)
        y = self.act(y) 
        
        x_h, x_w = torch.split(y, [h, w], dim=2)
        x_w = x_w.permute(0, 1, 3, 2)

        a_h = self.conv_h(x_h).sigmoid()
        a_w = self.conv_w(x_w).sigmoid()

        out = identity * a_w * a_h

        return out



def CA_onnx_gen():
    conv=CoordAtt(64,64)
    dummy_input = torch.randn(8,64, 128, 128)
    out=conv(dummy_input)
    print(out.shape)
 
    print(conv)
    # conv.load_state_dict(checkpoint)
    conv.eval()
    input_names = ["input"]
    output_names = ["output"]
    torch.onnx.export(conv, dummy_input, "CA.onnx", verbose=True, opset_version=13,input_names=input_names,
                      output_names=output_names)


if __name__=="__main__":
    CA_onnx_gen()

onnx结构:

相关推荐
程序员霸哥哥23 分钟前
从零搭建PyTorch计算机视觉模型
人工智能·pytorch·python·计算机视觉
胖哥真不错1 小时前
Python基于PyTorch实现多输入多输出进行CNN卷积神经网络回归预测项目实战
pytorch·python·毕业设计·课程设计·毕设·多输入多输出·cnn卷积神经网络回归预测
程序员-小李1 小时前
基于PyTorch的动物识别模型训练与应用实战
人工智能·pytorch·python
大大dxy大大6 小时前
机器学习实现逻辑回归-癌症分类预测
机器学习·分类·逻辑回归
武子康6 小时前
AI研究-119 DeepSeek-OCR PyTorch FlashAttn 2.7.3 推理与部署 模型规模与资源详细分析
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
忙碌5448 小时前
AI大模型时代下的全栈技术架构:从深度学习到云原生部署实战
人工智能·深度学习·架构
没有钱的钱仔9 小时前
机器学习笔记
人工智能·笔记·机器学习
听风吹等浪起9 小时前
基于改进TransUNet的港口船只图像分割系统研究
人工智能·深度学习·cnn·transformer
化作星辰10 小时前
深度学习_原理和进阶_PyTorch入门(2)后续语法3
人工智能·pytorch·深度学习
哥布林学者11 小时前
吴恩达深度学习课程二: 改善深层神经网络 第二周:优化算法(二)指数加权平均和学习率衰减
深度学习·ai