CoordAtt注意力网络结构

源码:

python 复制代码
import torch
import torch.nn as nn
import math
import torch.nn.functional as F

class h_sigmoid(nn.Module):
    def __init__(self, inplace=True):
        super(h_sigmoid, self).__init__()
        self.relu = nn.ReLU6(inplace=inplace)

    def forward(self, x):
        return self.relu(x + 3) / 6

class h_swish(nn.Module):
    def __init__(self, inplace=True):
        super(h_swish, self).__init__()
        self.sigmoid = h_sigmoid(inplace=inplace)

    def forward(self, x):
        return x * self.sigmoid(x)

class CoordAtt(nn.Module):
    def __init__(self, inp, oup, reduction=32):
        super(CoordAtt, self).__init__()
        self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
        self.pool_w = nn.AdaptiveAvgPool2d((1, None))

        mip = max(8, inp // reduction)

        self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(mip)
        self.act = h_swish()
        
        self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
        self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
        

    def forward(self, x):
        identity = x
        
        n,c,h,w = x.size()
        x_h = self.pool_h(x)
        x_w = self.pool_w(x).permute(0, 1, 3, 2)

        y = torch.cat([x_h, x_w], dim=2)
        y = self.conv1(y)
        y = self.bn1(y)
        y = self.act(y) 
        
        x_h, x_w = torch.split(y, [h, w], dim=2)
        x_w = x_w.permute(0, 1, 3, 2)

        a_h = self.conv_h(x_h).sigmoid()
        a_w = self.conv_w(x_w).sigmoid()

        out = identity * a_w * a_h

        return out



def CA_onnx_gen():
    conv=CoordAtt(64,64)
    dummy_input = torch.randn(8,64, 128, 128)
    out=conv(dummy_input)
    print(out.shape)
 
    print(conv)
    # conv.load_state_dict(checkpoint)
    conv.eval()
    input_names = ["input"]
    output_names = ["output"]
    torch.onnx.export(conv, dummy_input, "CA.onnx", verbose=True, opset_version=13,input_names=input_names,
                      output_names=output_names)


if __name__=="__main__":
    CA_onnx_gen()

onnx结构:

相关推荐
computersciencer1 分钟前
机器学习前的准备:划分数据集
人工智能·机器学习·数据分析
星火开发设计3 分钟前
从公式到应用:卷积公式全面解析与实战指南
学习·算法·机器学习·概率论·知识·期末考试·卷积公式
shangjian00711 分钟前
AI大模型-机器学习-算法-线性回归-优化方法
人工智能·算法·机器学习
嗯mua.11 分钟前
【人工智能】机器学习基础概念
人工智能·机器学习
Yuer202513 分钟前
状态不是变量:Rust 量化算子中的 State 工程语义
开发语言·后端·深度学习·机器学习·rust
光羽隹衡13 分钟前
机器学习——词向量转化和评论判断项目分析
人工智能·学习·机器学习
啊巴矲14 分钟前
小白从零开始勇闯人工智能:机器学习初级篇(词向量转换)
人工智能·机器学习
shangjian00714 分钟前
AI大模型-机器学习-算法-逻辑回归
人工智能·算法·机器学习
njsgcs16 分钟前
dqn为什么不能自动驾驶
人工智能·机器学习·自动驾驶
钮钴禄·爱因斯晨16 分钟前
机器学习(一):机器学习概述
人工智能·机器学习