CoordAtt注意力网络结构

源码:

python 复制代码
import torch
import torch.nn as nn
import math
import torch.nn.functional as F

class h_sigmoid(nn.Module):
    def __init__(self, inplace=True):
        super(h_sigmoid, self).__init__()
        self.relu = nn.ReLU6(inplace=inplace)

    def forward(self, x):
        return self.relu(x + 3) / 6

class h_swish(nn.Module):
    def __init__(self, inplace=True):
        super(h_swish, self).__init__()
        self.sigmoid = h_sigmoid(inplace=inplace)

    def forward(self, x):
        return x * self.sigmoid(x)

class CoordAtt(nn.Module):
    def __init__(self, inp, oup, reduction=32):
        super(CoordAtt, self).__init__()
        self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
        self.pool_w = nn.AdaptiveAvgPool2d((1, None))

        mip = max(8, inp // reduction)

        self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(mip)
        self.act = h_swish()
        
        self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
        self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
        

    def forward(self, x):
        identity = x
        
        n,c,h,w = x.size()
        x_h = self.pool_h(x)
        x_w = self.pool_w(x).permute(0, 1, 3, 2)

        y = torch.cat([x_h, x_w], dim=2)
        y = self.conv1(y)
        y = self.bn1(y)
        y = self.act(y) 
        
        x_h, x_w = torch.split(y, [h, w], dim=2)
        x_w = x_w.permute(0, 1, 3, 2)

        a_h = self.conv_h(x_h).sigmoid()
        a_w = self.conv_w(x_w).sigmoid()

        out = identity * a_w * a_h

        return out



def CA_onnx_gen():
    conv=CoordAtt(64,64)
    dummy_input = torch.randn(8,64, 128, 128)
    out=conv(dummy_input)
    print(out.shape)
 
    print(conv)
    # conv.load_state_dict(checkpoint)
    conv.eval()
    input_names = ["input"]
    output_names = ["output"]
    torch.onnx.export(conv, dummy_input, "CA.onnx", verbose=True, opset_version=13,input_names=input_names,
                      output_names=output_names)


if __name__=="__main__":
    CA_onnx_gen()

onnx结构:

相关推荐
XX風几秒前
4.1 spectral clusterig
人工智能·机器学习·支持向量机
Rabbit_QL7 分钟前
PyTorch DataLoader `num_workers` 配置指南:从新手到进阶
人工智能·pytorch·python
咩咩不吃草20 分钟前
【逻辑回归】:从模型训练到评价
算法·机器学习·逻辑回归
Loacnasfhia91 小时前
【深度学习】【目标检测】YOLO11-C3k2-Faster-EMA模型实现草莓与番茄成熟度及病害识别系统
人工智能·深度学习·目标检测
张祥6422889041 小时前
二次型:从线性代数到测量平差的桥梁
线性代数·算法·机器学习
微尘hjx1 小时前
【数据集 02】车牌CCPD命名规则及下载地址
yolo·ccpd·ccpd2019·ccpd2020·车牌·车牌数据集
高洁011 小时前
基于物理交互的具身智能决策框架设计
算法·机器学习·数据挖掘·transformer·知识图谱
爱吃泡芙的小白白1 小时前
机器学习输出层设计精要:从原理到产业实践
人工智能·机器学习
阡陌..1 小时前
pytorch模型训练使用多GPU执行报错:Bus error (core dumped)(未解决)
人工智能·pytorch·python
XX風2 小时前
5.1 deep learning introduction
人工智能·深度学习