学习笔记:Opencv实现图像特征提取算法SIFT

2023.8.19

为了在暑假内实现深度学习的进阶学习,特意学习一下传统算法,分享学习心得,记录学习日常

SIFT的百科:

SIFT = Scale Invariant Feature Transform, 尺度不变特征转换

全网最详细SIFT算法原理实现_ssift算法_Tc.小浩的博客-CSDN博客
在环境配置中要配置opencv:

pip install opencv-contrib-python

SIFT算法的三个计算步骤:

1,在DOG尺度空间中获取特征点;

2,关键点的方向估计(寻找主方向)

3,通过各关键点的特征向量(关键点的描述子生成)

进行两两比较找出相互匹配的若干对特征点,建立两图间景物间的对应关系,可以基于SIFT实现图像拼接

Code of SIFT and lena:

注意你是否有lena.png图像

import cv2 as cv

img = cv.imread('lena.png')
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
sift = cv.xfeatures2d.SIFT_create()
# sift = cv.SIFT_create()
kp = sift.detect(gray, None)
img = cv.drawKeypoints(gray, kp, img)
cv.imshow("SIFT", img)
cv.imwrite('sift_keypoints.jpg', img)
cv.waitKey(0)
cv.destroyAllWindows()

Result is shown in these figrues : SIFT 提取了lena的特征点

基于SIFT的图片实现图片拼接:

代码是Copy大神的,注意有两个代码,运行第二个喔。代码所用的图片也附上!

import numpy as np
import cv2


class Stitcher:

    # 拼接函数
    def stitch(self, images, ratio=0.75, reprojThresh=4.0, showMatches=False):
        # 获取输入图片
        (imageB, imageA) = images
        # 检测A、B图片的SIFT关键特征点,并计算特征描述子
        (kpsA, featuresA) = self.detectAndDescribe(imageA)
        (kpsB, featuresB) = self.detectAndDescribe(imageB)

        # 匹配两张图片的所有特征点,返回匹配结果
        M = self.matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh)

        # 如果返回结果为空,没有匹配成功的特征点,退出算法
        if M is None:
            return None

        # 否则,提取匹配结果
        # H是3x3视角变换矩阵
        (matches, H, status) = M
        # 将图片A进行视角变换,result是变换后图片
        result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
        # 将图片B传入result图片最左端
        result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB

        # 检测是否需要显示图片匹配
        if showMatches:
            # 生成匹配图片
            vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches, status)
            # 返回结果
            return (result, vis)

        # 返回匹配结果
        return result

    def detectAndDescribe(self, image):
        # 将彩色图片转换成灰度图
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        # 建立SIFT生成器
        descriptor = cv2.xfeatures2d.SIFT_create()

        # 检测SIFT特征点,并计算描述子
        (kps, features) = descriptor.detectAndCompute(image, None)

        # 将结果转换成NumPy数组
        kps = np.float32([kp.pt for kp in kps])
        print(kps)

        # 返回特征点集,及对应的描述特征
        return (kps, features)

    def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh):
        # 建立暴力匹配器
        matcher = cv2.DescriptorMatcher_create("BruteForce")

        # 使用KNN检测来自A、B图的SIFT特征匹配对,K=2
        rawMatches = matcher.knnMatch(featuresA, featuresB, 2)

        matches = []
        for m in rawMatches:
            # 当最近距离跟次近距离的比值小于ratio值时,保留此匹配对
            if len(m) == 2 and m[0].distance < m[1].distance * ratio:
                # 存储两个点在featuresA, featuresB中的索引值
                matches.append((m[0].trainIdx, m[0].queryIdx))

        # 当筛选后的匹配对大于4时,计算视角变换矩阵
        if len(matches) > 4:
            # 获取匹配对的点坐标
            ptsA = np.float32([kpsA[i] for (_, i) in matches])
            ptsB = np.float32([kpsB[i] for (i, _) in matches])

            # 计算视角变换矩阵
            (H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh)

            # 返回结果
            return (matches, H, status)

        # 如果匹配对小于4时,返回None
        return None

    def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
        # 初始化可视化图片,将A、B图左右连接到一起
        (hA, wA) = imageA.shape[:2]
        (hB, wB) = imageB.shape[:2]
        vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
        vis[0:hA, 0:wA] = imageA
        vis[0:hB, wA:] = imageB

        # 联合遍历,画出匹配对
        for ((trainIdx, queryIdx), s) in zip(matches, status):
            # 当点对匹配成功时,画到可视化图上
            if s == 1:
                # 画出匹配对
                ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
                ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
                cv2.line(vis, ptA, ptB, (0, 255, 0), 1)

        # 返回可视化结果
        return vis

from Stitcher import Stitcher
import cv2

# 读取拼接图片
imageA = cv2.imread("image/left_01.png")
imageB = cv2.imread("image/right_01.png")

# 把图片拼接成全景图
stitcher = Stitcher()
(result, vis) = stitcher.stitch([imageA, imageB], showMatches=True)

# 显示所有图片
cv2.imshow("Image A", imageA)
cv2.imshow("Image B", imageB)
cv2.imshow("Keypoint Matches", vis)
cv2.imshow("Result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

代码使用的图片

效果是这样:

相关推荐
芊寻(嵌入式)9 分钟前
C转C++学习笔记--基础知识摘录总结
开发语言·c++·笔记·学习
准橙考典36 分钟前
怎么能更好的通过驾考呢?
人工智能·笔记·自动驾驶·汽车·学习方法
hong1616881 小时前
跨模态对齐与跨领域学习
学习
阿伟来咯~1 小时前
记录学习react的一些内容
javascript·学习·react.js
Suckerbin2 小时前
Hms?: 1渗透测试
学习·安全·网络安全
水豚AI课代表2 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
聪明的墨菲特i2 小时前
Python爬虫学习
爬虫·python·学习
Diamond技术流2 小时前
从0开始学习Linux——网络配置
linux·运维·网络·学习·安全·centos
密码小丑2 小时前
11月4日(内网横向移动(一))
笔记
斑布斑布2 小时前
【linux学习2】linux基本命令行操作总结
linux·运维·服务器·学习