回归预测 | MATLAB实现TSO-SVM金枪鱼群算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现TSO-SVM金枪鱼群算法优化支持向量机多输入单输出回归预测(多指标,多图)

目录

    • [回归预测 | MATLAB实现TSO-SVM金枪鱼群算法优化支持向量机多输入单输出回归预测(多指标,多图)](#回归预测 | MATLAB实现TSO-SVM金枪鱼群算法优化支持向量机多输入单输出回归预测(多指标,多图))

效果一览



基本介绍

回归预测 | MATLAB实现TSO-SVM金枪鱼群算法优化支持向量机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;

多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现TSO-SVM金枪鱼群算法优化支持向量机多输入单输出回归预测(多指标,多图)(多指标,多图)
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('data.xlsx');

%%  划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);



%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);



%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161

[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关推荐
孤独且没人爱的纸鹤2 天前
【机器学习】深入无监督学习分裂型层次聚类的原理、算法结构与数学基础全方位解读,深度揭示其如何在数据空间中构建层次化聚类结构
人工智能·python·深度学习·机器学习·支持向量机·ai·聚类
ALISHENGYA3 天前
用Python实现SVM搭建金融反诈模型(含调试运行)
算法·机器学习·支持向量机·svm
机器学习之心3 天前
回归预测 | MATLAB基于TCN-BiGRU时间卷积神经网络结合双向门控循环单元多输入单输出回归预测
matlab·回归·多输入单输出回归预测·cnn·tcn-bigru·时间卷积双向门控循环单元
KeyPan6 天前
【机器学习:三十三(一)、支持向量机】
人工智能·神经网络·算法·机器学习·支持向量机·数据挖掘·迁移学习
yuanbenshidiaos6 天前
【大数据】机器学习------支持向量机(SVM)
大数据·机器学习·支持向量机
笔写落去6 天前
统计学习方法(第二版) 第七章 支持向量机 (第三节)
人工智能·算法·机器学习·支持向量机
浊酒南街7 天前
SVM模型(理论知识2)
人工智能·机器学习·支持向量机
KeyPan7 天前
【机器学习:三十三(二)、支持向量机(SVM)的核函数:概念、类型与应用】
人工智能·神经网络·算法·机器学习·支持向量机·数据挖掘
笔写落去8 天前
统计学习方法(第二版) 第七章 支持向量机(第二节)
人工智能·算法·机器学习·支持向量机
笔写落去8 天前
统计学习方法(第二版) 第七章 支持向量机 (第四节)
算法·机器学习·支持向量机