06有监督学习——迁移学习

1.迁移学习分类

(1) 基于实例的迁移学习方法:

  • 假设:源域中的一些数据和目标域会共享很多共同的特征
  • 方法:对源域进行instance reweighting,筛选出与目标域数据相似度高的数据,然后进行训练学习

(2)基于特征的迁移学习

当源域和目标域含有一些共同的交叉特征时,我们可以通过特征变换,将源域和目标域的特征变换到相同空间,使得该空间中源域数据与目标域数据具有相同分布的数据分布,然后进行传统的机器学习。

(3)基于模型的迁移学习

基于模型的迁移,源域和目标域共享模型参数,也就是将之前在源域中通过大量数据训练好的模型应用到目标域上进行预测。

  • 特点:模型相同部分直接进行迁移
  • 不需要数据训练

(4) 基于关系的迁移学习

当两个域是相似的时候,那么它们之间会共享某种相似关系,将源域中学习到的逻辑网络关系应用到目标域上来进行迁移,比方说生物病毒传播规律到计算机病毒传播规律的迁移。这部分的研究工作比较少。典型方法就是mapping的方法。

总结迁移的方式:

  • 数据
  • 特征
  • 模型
  • 思路
相关推荐
EMQX12 小时前
利用 EMQX 消息队列解决关键物联网消息传递挑战
人工智能·后端·物联网·mqtt·emqx
微露清风13 小时前
系统性学习C++进阶-第十四讲-二叉搜索树
开发语言·c++·学习
凌峰的博客13 小时前
基于深度学习的图像修复技术调研总结(下)
人工智能·深度学习
知识进脑的肖老千啊13 小时前
LangGraph简单讲解示例——State、Node、Edge
人工智能·python·ai·langchain
Deepoch13 小时前
智能硬件新纪元:Deepoc开发板如何重塑机器狗的“大脑”与“小脑”
人工智能·具身模型·deepoc·机械狗
Mintopia13 小时前
🐱 LongCat-Image:当AI绘画说上了流利的中文,还减掉了40斤参数 | 共绩算力
人工智能·云原生·aigc
Mintopia13 小时前
量子计算会彻底改变 AI 的运算方式吗?一场关于"量子幽灵"与"硅基大脑"的深夜对话 🎭💻
人工智能·llm·aigc
natide13 小时前
表示/嵌入差异-4-闵可夫斯基距离(Minkowski Distance-曼哈顿距离-欧氏距离-切比雪夫距离
人工智能·深度学习·算法·机器学习·自然语言处理·概率论
brave and determined13 小时前
传感器学习(day19):ToF传感技术:从测距到三维视觉革命
嵌入式硬件·学习·嵌入式系统·st·tof·嵌入式设计·flightsense
蹦蹦跳跳真可爱58913 小时前
Python----大模型(GPT-2模型训练,预测)
开发语言·人工智能·pytorch·python·gpt·深度学习·embedding