06有监督学习——迁移学习

1.迁移学习分类

(1) 基于实例的迁移学习方法:

  • 假设:源域中的一些数据和目标域会共享很多共同的特征
  • 方法:对源域进行instance reweighting,筛选出与目标域数据相似度高的数据,然后进行训练学习

(2)基于特征的迁移学习

当源域和目标域含有一些共同的交叉特征时,我们可以通过特征变换,将源域和目标域的特征变换到相同空间,使得该空间中源域数据与目标域数据具有相同分布的数据分布,然后进行传统的机器学习。

(3)基于模型的迁移学习

基于模型的迁移,源域和目标域共享模型参数,也就是将之前在源域中通过大量数据训练好的模型应用到目标域上进行预测。

  • 特点:模型相同部分直接进行迁移
  • 不需要数据训练

(4) 基于关系的迁移学习

当两个域是相似的时候,那么它们之间会共享某种相似关系,将源域中学习到的逻辑网络关系应用到目标域上来进行迁移,比方说生物病毒传播规律到计算机病毒传播规律的迁移。这部分的研究工作比较少。典型方法就是mapping的方法。

总结迁移的方式:

  • 数据
  • 特征
  • 模型
  • 思路
相关推荐
苍何2 小时前
腾讯重磅开源!混元图像 3.0 图生图真香!
人工智能
千里马也想飞2 小时前
人工智能在医疗领域的应用与研究论文写作实操:AI辅助快速完成框架+正文创作
人工智能
Rorsion2 小时前
PyTorch实现二分类(单特征输出+单层神经网络)
人工智能·pytorch·分类
red_redemption2 小时前
自由学习记录(116)
学习
勾股导航3 小时前
K-means
人工智能·机器学习·kmeans
liliangcsdn3 小时前
Diff2Flow中扩散和流匹配的对齐探索
人工智能
SmartBrain3 小时前
战略洞察:以AI为代表的第四次工业革命
人工智能·语言模型·aigc
一个处女座的程序猿3 小时前
AI之Agent之VibeCoding:《Vibe Coding Kills Open Source》翻译与解读
人工智能·开源·vibecoding·氛围编程
Jay Kay3 小时前
GVPO:Group Variance Policy Optimization
人工智能·算法·机器学习
风指引着方向3 小时前
归约操作优化:ops-math 的 Sum/Mean/Max 实现
人工智能·wpf