06有监督学习——迁移学习

1.迁移学习分类

(1) 基于实例的迁移学习方法:

  • 假设:源域中的一些数据和目标域会共享很多共同的特征
  • 方法:对源域进行instance reweighting,筛选出与目标域数据相似度高的数据,然后进行训练学习

(2)基于特征的迁移学习

当源域和目标域含有一些共同的交叉特征时,我们可以通过特征变换,将源域和目标域的特征变换到相同空间,使得该空间中源域数据与目标域数据具有相同分布的数据分布,然后进行传统的机器学习。

(3)基于模型的迁移学习

基于模型的迁移,源域和目标域共享模型参数,也就是将之前在源域中通过大量数据训练好的模型应用到目标域上进行预测。

  • 特点:模型相同部分直接进行迁移
  • 不需要数据训练

(4) 基于关系的迁移学习

当两个域是相似的时候,那么它们之间会共享某种相似关系,将源域中学习到的逻辑网络关系应用到目标域上来进行迁移,比方说生物病毒传播规律到计算机病毒传播规律的迁移。这部分的研究工作比较少。典型方法就是mapping的方法。

总结迁移的方式:

  • 数据
  • 特征
  • 模型
  • 思路
相关推荐
5Gcamera1 小时前
4G body camera BC310/BC310D user manual
人工智能·边缘计算·智能安全帽·执法记录仪·smarteye
Elias不吃糖2 小时前
Java Lambda 表达式
java·开发语言·学习
梨子串桃子_2 小时前
推荐系统学习笔记 | PyTorch学习笔记
pytorch·笔记·python·学习·算法
爱喝可乐的老王2 小时前
机器学习中常用交叉验证总结
人工智能·机器学习
jjjxxxhhh1232 小时前
spdlog介绍使用
学习
公链开发3 小时前
2026 Web3机构级风口:RWA Tokenization + ZK隐私系统定制开发全解析
人工智能·web3·区块链
wyw00003 小时前
目标检测之YOLO
人工智能·yolo·目标检测
发哥来了3 小时前
AI视频生成企业级方案选型指南:2025年核心能力与成本维度深度对比
大数据·人工智能
_codemonster3 小时前
强化学习入门到实战系列(四)马尔科夫决策过程
人工智能
北邮刘老师3 小时前
智能体治理:人工智能时代信息化系统的全新挑战与课题
大数据·人工智能·算法·机器学习·智能体互联网