GIS应用技巧之空间插值分析

一、空间插值概论

空间插值常用于将离散点的测量数据转换为连续的数据曲面,以便探究空 间现象的分布模式,该方法通常用来分析地区环境污染、地区降水量、地区气候 变化、资源利用程度、公共基础设施影响效应等。空间插值方法分为两类:一类 是确定性方法,另一类是地质统计学方法。确定性插值方法是基于信息点之间 的相似程度或者整个曲面的光滑性来创建一个拟合曲面,比如反距离加权平均插值法(IDW)、趋势面法、样条函数法等。地质统计学插值方法是利用样本点 的统计规律,使样本点之间的空间自相关性定量化,从而在待预测的点周围构建样本点的空间结构模型,比如克立格(Kriging)插值法。确定性插值方法的 特点是在样本点处的插值结果和原样本点实际值基本一致,若是利用非确定性 插值方法的话,在样本处的插值结果与样本实测值就不一定一致了,有的相差 甚远。在实际的GIS 应用过程中,往往要根据实际的需要,综合考虑插值的精 度、效率等因素,来选择不同的插值方法。这里着重介绍下反距离加权,样条函 数和克里金插值法。

(1)反距离加权法(IDW)

GIS 中最常用的空间内插方法之一是反距离加权法,是以插值点与样 本点之间的距离为权重的插值方法,插值点越近的样本点赋予的权重越大,其 权重贡献与距离成反比。可表示为:

其中 Z 是插值点估计值,Zi(i =1、2、3、、、、)是实测样本值,n为参与计算 的实测样本数,Di为插值点与第 i 个站点间的距离,p是距离的幂,它显著影响 内插的结果,它的选择标准是最小平均绝对误差。

(2)样条函数内插法

样条函数是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线 段连接处连续,这就意味着样条函数可以修改少数数据点配准而不必重新计算 整条曲线。样条函数的一些缺点是:样条内插的误差不能直接估算,同时在实 践中要解决的问题是样条块的定义以及如何在三维空间中将这些"块"拼成复 杂曲面,又不引入原始曲面中所没有的异常现象等问题。

(3)克里格插值法

克里格法是 GIS 软件地理统计插值的重要组成部分。这种方法充分吸收 了地理统计的思想,认为任何在空间连续性变化的属性是非常不规则的,不能 用简单的平滑数学函数进行模拟,可以用随机表面给予较恰当的描述。这种连 续性变化的空间属性称为"区域性变量",可以描述像气压、高程及其他连续性 变化的描述指标变量。地理统计方法为空间插值提供了一种优化策略,即在插 值过程中根据某种优化准则函数动态的决定变量的数值。Kriging 插值方法着 重于权重系数的确定,从而使内插函数处于最佳状态,即对给定点上的变量值 提供最好的线性无偏估计。

GIS 中有七类克里格法,下表是这七种方法的名称和适用范围:

克里格法的优点是以空间统计学作为其坚实的理论基础,可以克服内插中误差难以分析的问题,能够对误差做出逐点的理论估计;不但能估计测定参数 的空间变异分布,而且还可以估算估计参数的方差分布。其缺点是计算步骤较 繁琐,计算量大,且变异函数有时需要根据经验人为选定。

GIS海量数据、资源、教程:树谷资料库大全(2023年8月16日更新)

相关推荐
Kenneth風车3 分钟前
【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版 (1)11
算法·机器学习·分类
诚威_lol_中大努力中11 分钟前
关于VQ-GAN利用滑动窗口生成 高清图像
人工智能·神经网络·生成对抗网络
中关村科金31 分钟前
中关村科金智能客服机器人如何解决客户个性化需求与标准化服务之间的矛盾?
人工智能·机器人·在线客服·智能客服机器人·中关村科金
逸_35 分钟前
Product Hunt 今日热榜 | 2024-12-25
人工智能
Luke Ewin41 分钟前
基于3D-Speaker进行区分说话人项目搭建过程报错记录 | 通话录音说话人区分以及语音识别 | 声纹识别以及语音识别 | pyannote-audio
人工智能·语音识别·声纹识别·通话录音区分说话人
DashVector1 小时前
如何通过HTTP API检索Doc
数据库·人工智能·http·阿里云·数据库开发·向量检索
说私域1 小时前
无人零售及开源 AI 智能名片 S2B2C 商城小程序的深度剖析
人工智能·小程序·零售
Calvin8808281 小时前
Android Studio 的革命性更新:Project Quartz 和 Gemini,开启 AI 开发新时代!
android·人工智能·android studio
Jamence2 小时前
【深度学习数学知识】-贝叶斯公式
人工智能·深度学习·概率论
feifeikon2 小时前
机器学习DAY4续:梯度提升与 XGBoost (完)
人工智能·深度学习·机器学习