BUGFix:onnx -> TensorRT转换过程失败

先附上相关的onnx2trt的部分代码:

复制代码
def onnx2trt(onnx_path):
    logger = trt.Logger(trt.Logger.ERROR)
    builder = trt.Builder(logger)
    network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
    parser = trt.OnnxParser(network, logger)
    parser.parse_from_file(onnx_path)
    config = builder.create_builder_config()
    config.max_workspace_size=max_workspace_size
    config.set_flag(trt.BuilderFlag.FP16)
    op = builder.create_optimization_profile()
    # op.set_shape('model0/input', (1, )+shape, (batch_size[0], )+shape, (batch_size[1], )+shape)
    op.set_shape(network.get_input(0).name, (min_batch_size, )+input_shape, (opt_batch_size, )+input_shape, (max_batch_size, )+input_shape)
    config.add_optimization_profile(op)
    engine = builder.build_engine(network, config)
    # trt_path = onnx_path.replace('/onnx/', '/trt/').replace('.onnx', '.plan')
    trt_path = onnx_path.replace('.onnx', '.plan')
    with open(trt_path,'wb') as f:
        f.write(engine.serialize())

在onnx转换TensorRT的过程中,提示15行代码有错误:

config.max_workspace_size=max_workspace_size

其中,max_workspace_size = 1<<30

首先单位是字节,比如 builder.max_workspace_size = 1<< 30 就是 2^30 bytes 即 1 GB。

它的作用是给出模型中任一层能使用的内存上限。运行时,每一层需要多少内存系统分配多少,并不是每次都分 1 GB,但不会超过 1 GB。

具体报错信息如下:

复制代码
TypeError: deserialize_cuda_engine(): incompatible function arguments. The following argument types are supported:
   1. (self: tensorrt.tensorrt.Runtime, serialized_engine: buffer) -> tensorrt.tensorrt.ICudaEngine

Invoked with: <tensorrt.tensorrt.Runtime object at 0x7feecb3c6530>, None

上面这错误可能是由于max_workspace_size分配不够导致的错误,可试着将30放大,但是我这里不管用;

原因是构建nvidia-docker时候,设置 --shm-size =32,共享内存的太小,不支持onnx-TensorRT的操作,这里修改为64,问题得以解决;

有问题随时交流,欢迎一键三连~

参考:

https://www.cnblogs.com/mrlonely2018/p/14841562.html

相关推荐
百度智能云技术站几秒前
AI 云再进化,百度智能云新技术与产品全景解读
人工智能·百度
Christo32 分钟前
TFS-2023《Fuzzy Clustering With Knowledge Extraction and Granulation》
人工智能·算法·机器学习·支持向量机
Ai尚研修-贾莲3 分钟前
全链路自主构建智慧科研写作系统——融合LLM语义理解、多智能体任务协同与n8n自动化工作流构建
人工智能·agent·智能体·deepseek·n8n·智慧科研写作·llm语义理解
过河卒_zh15667663 分钟前
AI内容标识新规实施后,大厂AI用户协议有何变化?(二)百度系
人工智能·算法·aigc·算法备案·生成合成类算法备案
未来之窗软件服务9 分钟前
商业软件开发入门到精通之路-东方仙盟
人工智能·数据挖掘·仙盟创梦ide·东方仙盟·商业软件开发入门
张较瘦_9 分钟前
[论文阅读] 人工智能 + 软件工程 | 首个仓库级多任务调试数据集!RepoDebug揭秘LLM真实调试水平
论文阅读·人工智能
薰衣草233317 分钟前
滑动窗口(2)——不定长
python·算法·leetcode
User_芊芊君子1 小时前
【JavaSE】复习总结
java·开发语言·python
MYZR11 小时前
瑞萨电子:嵌入式计算与芯片技术的创新引领者
人工智能·核心板·ssd2351
计算机毕业设计木哥1 小时前
计算机毕业设计 基于Python+Django的医疗数据分析系统
开发语言·hadoop·后端·python·spark·django·课程设计