BUGFix:onnx -> TensorRT转换过程失败

先附上相关的onnx2trt的部分代码:

复制代码
def onnx2trt(onnx_path):
    logger = trt.Logger(trt.Logger.ERROR)
    builder = trt.Builder(logger)
    network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
    parser = trt.OnnxParser(network, logger)
    parser.parse_from_file(onnx_path)
    config = builder.create_builder_config()
    config.max_workspace_size=max_workspace_size
    config.set_flag(trt.BuilderFlag.FP16)
    op = builder.create_optimization_profile()
    # op.set_shape('model0/input', (1, )+shape, (batch_size[0], )+shape, (batch_size[1], )+shape)
    op.set_shape(network.get_input(0).name, (min_batch_size, )+input_shape, (opt_batch_size, )+input_shape, (max_batch_size, )+input_shape)
    config.add_optimization_profile(op)
    engine = builder.build_engine(network, config)
    # trt_path = onnx_path.replace('/onnx/', '/trt/').replace('.onnx', '.plan')
    trt_path = onnx_path.replace('.onnx', '.plan')
    with open(trt_path,'wb') as f:
        f.write(engine.serialize())

在onnx转换TensorRT的过程中,提示15行代码有错误:

config.max_workspace_size=max_workspace_size

其中,max_workspace_size = 1<<30

首先单位是字节,比如 builder.max_workspace_size = 1<< 30 就是 2^30 bytes 即 1 GB。

它的作用是给出模型中任一层能使用的内存上限。运行时,每一层需要多少内存系统分配多少,并不是每次都分 1 GB,但不会超过 1 GB。

具体报错信息如下:

复制代码
TypeError: deserialize_cuda_engine(): incompatible function arguments. The following argument types are supported:
   1. (self: tensorrt.tensorrt.Runtime, serialized_engine: buffer) -> tensorrt.tensorrt.ICudaEngine

Invoked with: <tensorrt.tensorrt.Runtime object at 0x7feecb3c6530>, None

上面这错误可能是由于max_workspace_size分配不够导致的错误,可试着将30放大,但是我这里不管用;

原因是构建nvidia-docker时候,设置 --shm-size =32,共享内存的太小,不支持onnx-TensorRT的操作,这里修改为64,问题得以解决;

有问题随时交流,欢迎一键三连~

参考:

https://www.cnblogs.com/mrlonely2018/p/14841562.html

相关推荐
爱笑的眼睛1113 小时前
PyTorch自动微分:超越基础,深入动态计算图与工程实践
java·人工智能·python·ai
LiYingL13 小时前
PictSure:通过视觉嵌入功能挑战 _Few-Shot _分类的新方法
人工智能·分类·数据挖掘
AI浩13 小时前
SemOD:基于语义增强的多天气条件目标检测网络
网络·人工智能·目标检测
老兵发新帖13 小时前
AI驱动架构设计开源项目分析:next-ai-drawio
人工智能·开源·draw.io
Daily Mirror13 小时前
Day33 类的装饰器
python
rundreamsFly13 小时前
【云馨AI】基于 AI 的 COSMIC智能文档工具 第二代功能点评估:从效率到精准度的全面升级
人工智能·cosmic编写·cosmic
北京耐用通信13 小时前
调试复杂、适配难?耐达讯自动化Ethercat转Devicenet让继电器通讯少走弯路
人工智能·物联网·网络协议·自动化·信息与通信
人工智能教学实践13 小时前
AI大模型时代,计算机视觉课程如何™教”与“学”?
人工智能·计算机视觉
智源研究院13 小时前
智源开源 Reason-RFT:用强化学习重塑视觉推理,突破 VLM 泛化瓶颈
人工智能
DFT计算杂谈14 小时前
ABINIT能带计算数据处理脚本
数据库·人工智能