基于ECharts+flask的爬虫可视化

项目效果。

本案例基于python的flask框架,通过爬虫程序将数据存储在csv文件中,在项目运行时会通过render_template映射出对应的页面,并且触发一个函数,该函数会读取csv文件的数据将之交给echarts渲染 ,echarts将之渲染到页面中。

demo.html

复制代码
from flask import Flask,render_template
import pandas as pd

app = Flask(__name__)

@app.route("/")
def show():
    data = pd.read_csv('data.csv',encoding='gbk').to_dict(orient="records")
    return render_template("demo.html",data=data)

if __name__ == '__main__':
    app.run()

movie.py

复制代码
import requests
import re

#获取页面信息
url = "https://movie.douban.com/top250"
headers = {
    "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36 Edg/105.0.1343.27"
}
r = requests.get(url,headers=headers)
r = r.text
#解析页面
obj = re.compile(r'<li>.*?<span class="title">(?P<name>.*?)</span>.*?'
                 r'<span>(?P<num>.*?)人评价',re.S)
#匹配
result = obj.finditer(r)
f = open("data.csv",mode="a")
i = 0
f.write("name,value\n")
#输入
for it in result:
    f.write(str(i)+","+it.group("name")+","+it.group("num")+'\n')
    i += 1
f.close()

demo.html

复制代码
<html>
    <head>
        <style>
            *{
                margin:0;
                padding:0;
              }
        </style>
        <script src="https://cdn.bootcdn.net/ajax/libs/echarts/5.4.2/echarts.min.js"></script>
    </head>
    <body>
    <div id="main" style="width:100%;height:100%;background:gray;"></div>
    <script>
        var chartDom = document.getElementById('main');
        console.log(chartDom);
        var myChart = echarts.init(chartDom);
        var option;

        option = {
          title: {
            text: 'top',
            subtext: 'movie',
            left: 'center'
          },
          tooltip: {
            trigger: 'item'
          },
          legend: {
            orient: 'vertical',
            left: 'left'
          },
          series: [
            {
              name: 'Access From',
              type: 'pie',
              radius: '50%',
              data: {{data|tojson}},
              emphasis: {
                itemStyle: {
                  shadowBlur: 10,
                  shadowOffsetX: 0,
                  shadowColor: 'rgba(0, 0, 0, 0.5)'
                }
              }
            }
          ]
        };

        myChart.setOption(option);
    </script>
    </body>
</html>

data.csv

data.csv由movie.py运行得到。

复制代码
name,value
0,肖申克的救赎,2908819
1,霸王别姬,2147509
2,阿甘正传,2168793
3,泰坦尼克号,2199337
4,这个杀手不太冷,2302579
5,千与千寻,2252354
6,美丽人生,1330888
7,辛德勒的名单,1109486
8,星际穿越,1845221
9,盗梦空间,2068413
10,楚门的世界,1717501
11,忠犬八公的故事,1403302
12,海上钢琴师,1683202
13,三傻大闹宝莱坞,1864702
14,放牛班的春天,1316000
15,机器人总动员,1320349
16,无间道,1368920
17,疯狂动物城,1944723
18,控方证人,563523
19,大话西游之大圣娶亲,1538921
20,熔炉,934045
21,教父,971356
22,触不可及,1117970
23,当幸福来敲门,1524931
24,末代皇帝,888701

当然,我更希望爬虫程序是自动加载的,可以将之封装为一个函数,在页面加载时调用它。

相关推荐
limengshi1383929 分钟前
使用Python+xml+shutil修改目标检测图片和对应xml标注文件
xml·python·目标检测
计算机徐师兄36 分钟前
Python基于Django的房屋信息可视化及价格预测系统(附源码,文档说明)
python·房屋信息可视化·房屋价格预测系统·房屋价格预测·房屋分析·python房屋信息可视化系统·python房屋价格预测系统
木觞清37 分钟前
使用Python爬取豆瓣电影Top250并保存到Excel完整教程
开发语言·python
Start_Present37 分钟前
Pytorch 第十五回:神经网络编码器——GAN生成对抗网络
pytorch·python·神经网络·生成对抗网络·数据分析
水w1 小时前
【Python爬虫】简单案例介绍3
开发语言·爬虫·python·scrapy·beautifulsoup
weixin_307779131 小时前
Python Pandas实现导出两个Excel数据集的分组记录数分析
开发语言·python·pandas
陌漠ardently2 小时前
正则表达式和excel文件保存(python)
python·mysql·excel
2303_Alpha2 小时前
深度学习入门:神经网络的学习
人工智能·python·深度学习·神经网络·学习·机器学习
Q186000000002 小时前
如何把pdf的内容转化成结构化数据进行存储到mysql数据库
数据库·python·mysql·pdf
_x_w2 小时前
【16】数据结构之基于树的排序算法篇章
开发语言·数据结构·python·算法·链表·排序算法