基于ECharts+flask的爬虫可视化

项目效果。

本案例基于python的flask框架,通过爬虫程序将数据存储在csv文件中,在项目运行时会通过render_template映射出对应的页面,并且触发一个函数,该函数会读取csv文件的数据将之交给echarts渲染 ,echarts将之渲染到页面中。

demo.html

复制代码
from flask import Flask,render_template
import pandas as pd

app = Flask(__name__)

@app.route("/")
def show():
    data = pd.read_csv('data.csv',encoding='gbk').to_dict(orient="records")
    return render_template("demo.html",data=data)

if __name__ == '__main__':
    app.run()

movie.py

复制代码
import requests
import re

#获取页面信息
url = "https://movie.douban.com/top250"
headers = {
    "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36 Edg/105.0.1343.27"
}
r = requests.get(url,headers=headers)
r = r.text
#解析页面
obj = re.compile(r'<li>.*?<span class="title">(?P<name>.*?)</span>.*?'
                 r'<span>(?P<num>.*?)人评价',re.S)
#匹配
result = obj.finditer(r)
f = open("data.csv",mode="a")
i = 0
f.write("name,value\n")
#输入
for it in result:
    f.write(str(i)+","+it.group("name")+","+it.group("num")+'\n')
    i += 1
f.close()

demo.html

复制代码
<html>
    <head>
        <style>
            *{
                margin:0;
                padding:0;
              }
        </style>
        <script src="https://cdn.bootcdn.net/ajax/libs/echarts/5.4.2/echarts.min.js"></script>
    </head>
    <body>
    <div id="main" style="width:100%;height:100%;background:gray;"></div>
    <script>
        var chartDom = document.getElementById('main');
        console.log(chartDom);
        var myChart = echarts.init(chartDom);
        var option;

        option = {
          title: {
            text: 'top',
            subtext: 'movie',
            left: 'center'
          },
          tooltip: {
            trigger: 'item'
          },
          legend: {
            orient: 'vertical',
            left: 'left'
          },
          series: [
            {
              name: 'Access From',
              type: 'pie',
              radius: '50%',
              data: {{data|tojson}},
              emphasis: {
                itemStyle: {
                  shadowBlur: 10,
                  shadowOffsetX: 0,
                  shadowColor: 'rgba(0, 0, 0, 0.5)'
                }
              }
            }
          ]
        };

        myChart.setOption(option);
    </script>
    </body>
</html>

data.csv

data.csv由movie.py运行得到。

复制代码
name,value
0,肖申克的救赎,2908819
1,霸王别姬,2147509
2,阿甘正传,2168793
3,泰坦尼克号,2199337
4,这个杀手不太冷,2302579
5,千与千寻,2252354
6,美丽人生,1330888
7,辛德勒的名单,1109486
8,星际穿越,1845221
9,盗梦空间,2068413
10,楚门的世界,1717501
11,忠犬八公的故事,1403302
12,海上钢琴师,1683202
13,三傻大闹宝莱坞,1864702
14,放牛班的春天,1316000
15,机器人总动员,1320349
16,无间道,1368920
17,疯狂动物城,1944723
18,控方证人,563523
19,大话西游之大圣娶亲,1538921
20,熔炉,934045
21,教父,971356
22,触不可及,1117970
23,当幸福来敲门,1524931
24,末代皇帝,888701

当然,我更希望爬虫程序是自动加载的,可以将之封装为一个函数,在页面加载时调用它。

相关推荐
亓才孓5 小时前
[Class类的应用]反射的理解
开发语言·python
小镇敲码人6 小时前
深入剖析华为CANN框架下的Ops-CV仓库:从入门到实战指南
c++·python·华为·cann
摘星编程6 小时前
深入理解CANN ops-nn BatchNormalization算子:训练加速的关键技术
python
魔芋红茶6 小时前
Python 项目版本控制
开发语言·python
lili-felicity6 小时前
CANN批处理优化技巧:从动态批处理到流水线并行
人工智能·python
一个有梦有戏的人6 小时前
Python3基础:进阶基础,筑牢编程底层能力
后端·python
摘星编程6 小时前
解析CANN ops-nn中的Transpose算子:张量维度变换的高效实现
python
Liekkas Kono6 小时前
RapidOCR Python 贡献指南
开发语言·python·rapidocr
玄同7657 小时前
Python 后端三剑客:FastAPI/Flask/Django 对比与 LLM 开发选型指南
人工智能·python·机器学习·自然语言处理·django·flask·fastapi
爱吃泡芙的小白白7 小时前
环境数据多维关系探索利器:Pairs Plot 完全指南
python·信息可视化·数据分析·环境领域·pairs plot