基于ECharts+flask的爬虫可视化

项目效果。

本案例基于python的flask框架,通过爬虫程序将数据存储在csv文件中,在项目运行时会通过render_template映射出对应的页面,并且触发一个函数,该函数会读取csv文件的数据将之交给echarts渲染 ,echarts将之渲染到页面中。

demo.html

复制代码
from flask import Flask,render_template
import pandas as pd

app = Flask(__name__)

@app.route("/")
def show():
    data = pd.read_csv('data.csv',encoding='gbk').to_dict(orient="records")
    return render_template("demo.html",data=data)

if __name__ == '__main__':
    app.run()

movie.py

复制代码
import requests
import re

#获取页面信息
url = "https://movie.douban.com/top250"
headers = {
    "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36 Edg/105.0.1343.27"
}
r = requests.get(url,headers=headers)
r = r.text
#解析页面
obj = re.compile(r'<li>.*?<span class="title">(?P<name>.*?)</span>.*?'
                 r'<span>(?P<num>.*?)人评价',re.S)
#匹配
result = obj.finditer(r)
f = open("data.csv",mode="a")
i = 0
f.write("name,value\n")
#输入
for it in result:
    f.write(str(i)+","+it.group("name")+","+it.group("num")+'\n')
    i += 1
f.close()

demo.html

复制代码
<html>
    <head>
        <style>
            *{
                margin:0;
                padding:0;
              }
        </style>
        <script src="https://cdn.bootcdn.net/ajax/libs/echarts/5.4.2/echarts.min.js"></script>
    </head>
    <body>
    <div id="main" style="width:100%;height:100%;background:gray;"></div>
    <script>
        var chartDom = document.getElementById('main');
        console.log(chartDom);
        var myChart = echarts.init(chartDom);
        var option;

        option = {
          title: {
            text: 'top',
            subtext: 'movie',
            left: 'center'
          },
          tooltip: {
            trigger: 'item'
          },
          legend: {
            orient: 'vertical',
            left: 'left'
          },
          series: [
            {
              name: 'Access From',
              type: 'pie',
              radius: '50%',
              data: {{data|tojson}},
              emphasis: {
                itemStyle: {
                  shadowBlur: 10,
                  shadowOffsetX: 0,
                  shadowColor: 'rgba(0, 0, 0, 0.5)'
                }
              }
            }
          ]
        };

        myChart.setOption(option);
    </script>
    </body>
</html>

data.csv

data.csv由movie.py运行得到。

复制代码
name,value
0,肖申克的救赎,2908819
1,霸王别姬,2147509
2,阿甘正传,2168793
3,泰坦尼克号,2199337
4,这个杀手不太冷,2302579
5,千与千寻,2252354
6,美丽人生,1330888
7,辛德勒的名单,1109486
8,星际穿越,1845221
9,盗梦空间,2068413
10,楚门的世界,1717501
11,忠犬八公的故事,1403302
12,海上钢琴师,1683202
13,三傻大闹宝莱坞,1864702
14,放牛班的春天,1316000
15,机器人总动员,1320349
16,无间道,1368920
17,疯狂动物城,1944723
18,控方证人,563523
19,大话西游之大圣娶亲,1538921
20,熔炉,934045
21,教父,971356
22,触不可及,1117970
23,当幸福来敲门,1524931
24,末代皇帝,888701

当然,我更希望爬虫程序是自动加载的,可以将之封装为一个函数,在页面加载时调用它。

相关推荐
爱打代码的小林7 小时前
python基础(逻辑回归例题)
开发语言·python·逻辑回归
qq_214782617 小时前
pandas“将”迎来v3.0.0大版本更新!
python·pandas
dagouaofei7 小时前
长文档也能转成PPT:AI自动拆分章节并生成页面
人工智能·python·powerpoint
Keep_Trying_Go8 小时前
统一的人群计数训练框架(PyTorch)——基于主流的密度图模型训练框架
人工智能·pytorch·python·深度学习·算法·机器学习·人群计数
赵谨言8 小时前
基于OpenCV的图像梯度与边缘检测研究
大数据·开发语言·经验分享·python
啊阿狸不会拉杆8 小时前
《数字图像处理 》 第 1 章-绪论
图像处理·python·opencv·算法·数字图像处理
小白勇闯网安圈8 小时前
upload、very_easy_sql、i-got-id-200
python·网络安全·web
石国旺8 小时前
python打包PyInstaller程序,怎么越来越大,如何解决?
开发语言·python
python-码博士8 小时前
关于sklearn中StandardScaler的使用方式
人工智能·python·sklearn
江公望8 小时前
PyWebview浅谈
python