基于ECharts+flask的爬虫可视化

项目效果。

本案例基于python的flask框架,通过爬虫程序将数据存储在csv文件中,在项目运行时会通过render_template映射出对应的页面,并且触发一个函数,该函数会读取csv文件的数据将之交给echarts渲染 ,echarts将之渲染到页面中。

demo.html

复制代码
from flask import Flask,render_template
import pandas as pd

app = Flask(__name__)

@app.route("/")
def show():
    data = pd.read_csv('data.csv',encoding='gbk').to_dict(orient="records")
    return render_template("demo.html",data=data)

if __name__ == '__main__':
    app.run()

movie.py

复制代码
import requests
import re

#获取页面信息
url = "https://movie.douban.com/top250"
headers = {
    "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36 Edg/105.0.1343.27"
}
r = requests.get(url,headers=headers)
r = r.text
#解析页面
obj = re.compile(r'<li>.*?<span class="title">(?P<name>.*?)</span>.*?'
                 r'<span>(?P<num>.*?)人评价',re.S)
#匹配
result = obj.finditer(r)
f = open("data.csv",mode="a")
i = 0
f.write("name,value\n")
#输入
for it in result:
    f.write(str(i)+","+it.group("name")+","+it.group("num")+'\n')
    i += 1
f.close()

demo.html

复制代码
<html>
    <head>
        <style>
            *{
                margin:0;
                padding:0;
              }
        </style>
        <script src="https://cdn.bootcdn.net/ajax/libs/echarts/5.4.2/echarts.min.js"></script>
    </head>
    <body>
    <div id="main" style="width:100%;height:100%;background:gray;"></div>
    <script>
        var chartDom = document.getElementById('main');
        console.log(chartDom);
        var myChart = echarts.init(chartDom);
        var option;

        option = {
          title: {
            text: 'top',
            subtext: 'movie',
            left: 'center'
          },
          tooltip: {
            trigger: 'item'
          },
          legend: {
            orient: 'vertical',
            left: 'left'
          },
          series: [
            {
              name: 'Access From',
              type: 'pie',
              radius: '50%',
              data: {{data|tojson}},
              emphasis: {
                itemStyle: {
                  shadowBlur: 10,
                  shadowOffsetX: 0,
                  shadowColor: 'rgba(0, 0, 0, 0.5)'
                }
              }
            }
          ]
        };

        myChart.setOption(option);
    </script>
    </body>
</html>

data.csv

data.csv由movie.py运行得到。

复制代码
name,value
0,肖申克的救赎,2908819
1,霸王别姬,2147509
2,阿甘正传,2168793
3,泰坦尼克号,2199337
4,这个杀手不太冷,2302579
5,千与千寻,2252354
6,美丽人生,1330888
7,辛德勒的名单,1109486
8,星际穿越,1845221
9,盗梦空间,2068413
10,楚门的世界,1717501
11,忠犬八公的故事,1403302
12,海上钢琴师,1683202
13,三傻大闹宝莱坞,1864702
14,放牛班的春天,1316000
15,机器人总动员,1320349
16,无间道,1368920
17,疯狂动物城,1944723
18,控方证人,563523
19,大话西游之大圣娶亲,1538921
20,熔炉,934045
21,教父,971356
22,触不可及,1117970
23,当幸福来敲门,1524931
24,末代皇帝,888701

当然,我更希望爬虫程序是自动加载的,可以将之封装为一个函数,在页面加载时调用它。

相关推荐
Salt_07282 小时前
DAY 19 数组的常见操作和形状
人工智能·python·机器学习
无心水2 小时前
【Python实战进阶】2、Jupyter Notebook终极指南:为什么说不会Jupyter就等于不会Python?
python·jupyter·信息可视化·binder·google colab·python实战进阶·python工程化实战进阶
上班日常摸鱼3 小时前
Shell脚本基础教程:变量、条件判断、循环、函数实战(附案例)
python
无心水4 小时前
【Python实战进阶】5、Python字符串终极指南:从基础到高性能处理的完整秘籍
开发语言·网络·python·字符串·unicode·python实战进阶·python工业化实战进阶
2301_807583234 小时前
了解python,并编写第一个程序,常见的bug
linux·python
小白学大数据4 小时前
构建混合爬虫:何时使用Requests,何时切换至Selenium处理请求头?
爬虫·python·selenium·测试工具
2401_827560204 小时前
【Python脚本系列】PyAudio+librosa+dtw库录制、识别音频并实现点击(四)
python·语音识别
BBB努力学习程序设计4 小时前
Python自动化脚本:告别重复劳动
python·pycharm
BBB努力学习程序设计4 小时前
Python函数式编程:优雅的代码艺术
python·pycharm
2501_940943914 小时前
体系课\ Python Web全栈工程师
开发语言·前端·python