Lnton羚通视频算法算力云平台【PyTorch】教程:学习Datasets-DataLoader基础知识

Dataset & DataLoader

PyTorch 提供了两个数据处理的基本方法:torch.utils.data.DataLoader torch.utils.data.Dataset 允许使用预加载的数据集以及自己的数据。 Dataset 存储样本及其对应的标签, DataLoader 在 Dataset 基础上封装了一个可迭代的对象,以方便访问样本。

PyTorch 提供了许多预加载的数据集(如 FashionMNIST ) 这些数据集继承了 torch.utils.data.Dataset 类,并实现了特定数据的函数。它们可以用来创建模型原型和基准测试。Image Datasets, Text Datasets, 和 Audio Datasets

Loading a Dataset (加载数据集)

下面是一个加载 FashionMNIST 数据集的例子。 FashionMNIST 数据集包含了 60000 个训练样本和 10000 个测试样本,每一个样本是 28*28灰度图像和对应标签(一共 10 个类别)。

import torch 
from torch.utils.data import DataLoader 
from torchvision import datasets 
from torchvision.transforms import ToTensor 
import matplotlib.pyplot as plt 

training_data = datasets.FashionMNIST(
    root="../../data",   # 存放数据的路径
    train=True,          # 是训练数据集还是测试数据集
    download=True,       # 如果存储的路径里没有数据集的话,就从网络下载数据集
    transform=ToTensor() # 数据转换
)

test_data = datasets.FashionMNIST(
    root = "../../data", # 存放数据的路径
    train=False,         # 是训练数据集还是测试数据集
    download=True,       # 如果存储的路径里没有数据集的话,就从网络下载数据集
    transform=ToTensor() # 数据转换
)

Iterating and Visualizing the Dataset (迭代和可视化数据集)

我们可以像索引列表一样对数据集进行索引,如 training_data[index], 使用 matplotlib 对数据进行可视化。

labels_map = {
    0: "T-Shirt",
    1: "Trouser",
    2: "Pullover",
    3: "Dress",
    4: "Coat",
    5: "Sandal",
    6: "Shirt",
    7: "Sneaker",
    8: "Bag",
    9: "Ankle Boot",
}

figure = plt.figure(figsize=(10, 10))
cols, rows = 3, 3
for i in range(1, rows * cols + 1):
    sample_idx = torch.randint(0, len(training_data), size=(1,)).item()
    img, label = training_data[sample_idx]
    figure.add_subplot(rows, cols, i)
    plt.title(labels_map[label])
    plt.axis("off")
    plt.imshow(img.numpy().reshape(28, 28), cmap="gray")
plt.show()

Creating a Custom Dataset for your files (用自己的文件定制数据集)

一个定制的数据集需要实现 3 个函数: init, len, getitem。 FashionMNIST 图片存储在 img_dir 里,它们的标签存储在 CSV 标注文件里。

import os 
import numpy as np
import pandas as pd 
from torchvision.io import read_image

class CustomImageDataset(Dataset):
    def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
        self.img_labels = pd.read_csv(annotations_file)
        self.img_dir = img_dir
        self.transform = transform
        self.target_transform = target_transform

    def __len__(self):
        return len(self.img_labels)
  
    def __getitem(self, idx):
        img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
        image = read_image(img_path)
        label = self.img_labels.iloc[idx, 1]
        if self.transform:
            image = self.transform(image)
        if self.target_transform:
            label = self.target_transform(label)
        return image, label

__init__

当实例化 Dataset 对象时,__init__ 函数执行一次,需要包括包含图片和标注文件的路径,以及它们是否需要转换。

labels.csv 文件结构如下:

tshirt1.jpg, 0
tshirt2.jpg, 0
......
ankleboot999.jpg, 9

len_

len 函数返回数据中样本数量。

getitem

__getitem__函数从给定索引 idx 处的数据集中加载并返回一个样本。基于索引,它识别图像在磁盘上的位置,使用 read_image 将其转换为一个 tensor ,从 csv 数据中提取对应的标签,调用它们上的变换函数(如果适用),并在元组中返回 tensor 图像和相应的标签。

Lnton 羚通是专注于音视频算法、算力、云平台的高科技人工智能企业。 公司基于视频分析技术、视频智能传输技术、远程监测技术以及智能语音融合技术等, 拥有多款可支持 ONVIF、RTSP、GB/T28181 等多协议、多路数的音视频智能分析服务器 / 云平台。

相关推荐
池央11 分钟前
AI性能极致体验:通过阿里云平台高效调用满血版DeepSeek-R1模型
人工智能·阿里云·云计算
我们的五年12 分钟前
DeepSeek 和 ChatGPT 在特定任务中的表现:逻辑推理与创意生成
人工智能·chatgpt·ai作画·deepseek
Yan-英杰13 分钟前
百度搜索和文心智能体接入DeepSeek满血版——AI搜索的新纪元
图像处理·人工智能·python·深度学习·deepseek
Fuweizn15 分钟前
富唯智能可重构柔性装配产线:以智能协同赋能制造业升级
人工智能·智能机器人·复合机器人
taoqick2 小时前
对PosWiseFFN的改进: MoE、PKM、UltraMem
人工智能·pytorch·深度学习
suibian52352 小时前
AI时代:前端开发的职业发展路径拓宽
前端·人工智能
CSDN_PBB3 小时前
[STM32 - 野火] - - - 固件库学习笔记 - - - 十五.设置FLASH的读写保护及解除
笔记·stm32·学习
预测模型的开发与应用研究3 小时前
数据分析的AI+流程(个人经验)
人工智能·数据挖掘·数据分析
源大模型3 小时前
OS-Genesis:基于逆向任务合成的 GUI 代理轨迹自动化生成
人工智能·gpt·智能体
PowerBI学谦5 小时前
Python in Excel高级分析:一键RFM分析
大数据·人工智能·pandas