leetcode - 542. 01 Matrix

Description

Given an m x n binary matrix mat, return the distance of the nearest 0 for each cell.

The distance between two adjacent cells is 1.

Example 1:

Input: mat = [[0,0,0],[0,1,0],[0,0,0]]
Output: [[0,0,0],[0,1,0],[0,0,0]]

Example 2:

Input: mat = [[0,0,0],[0,1,0],[1,1,1]]
Output: [[0,0,0],[0,1,0],[1,2,1]]

Constraints:

m == mat.length
n == mat[i].length
1 <= m, n <= 104
1 <= m * n <= 104
mat[i][j] is either 0 or 1.
There is at least one 0 in mat.

Solution

BFS

Starts with all the positions with 0 as the value, and then use a dict to store the shortest distance. Update only when the new distance is shorter than existing ones.

Time complexity: o ( m ∗ n ) o(m*n) o(m∗n)

Space complexity: o ( m ∗ n ) o(m * n) o(m∗n)

DP

Use dp[i][j] to denote the distance for (i, j), then transformation equation is:
d p [ i ] [ j ] = m i n ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] , d p [ i ] [ j + 1 ] , d p [ i + 1 ] [ j ] ) + 1 dp[i][j] = min(dp[i - 1][j], dp[i][j - 1], dp[i][j + 1], dp[i+1][j]) + 1 dp[i][j]=min(dp[i−1][j],dp[i][j−1],dp[i][j+1],dp[i+1][j])+1

So we could start with restricting the calculating only from left to right and up to down, that is we start with left-top corner, and then we start with right-bottom corner.

Time complexity: o ( m ∗ n ) o(m*n) o(m∗n)

Code

BFS

python3 复制代码
class Solution:
    def updateMatrix(self, mat: List[List[int]]) -> List[List[int]]:
        import collections
        m, n = len(mat), len(mat[0])
        queue = collections.deque([(x, y, 0) for x in range(m) for y in range(n) if mat[x][y] == 0])
        res = {}
        while queue:
            x, y, v = queue.popleft()
            if res.get((x, y), m + n) < v:
                continue
            res[(x, y)] = v
            for dx in (1, -1):
                if 0 <= x + dx < m and mat[x + dx][y] == 1:
                    queue.append((x + dx, y, v + 1))
                if 0 <= y + dx < n and mat[x][y + dx]:
                    queue.append((x, y + dx, 1 + v))
        ret_mat = [[0] * n for _ in range(m)]
        for x in range(m):
            for y in range(n):
                ret_mat[x][y] = res[(x, y)]
        return ret_mat

DP

python3 复制代码
class Solution:
    def updateMatrix(self, mat: List[List[int]]) -> List[List[int]]:
        m, n = len(mat), len(mat[0])
        dp = [[0] * n for _ in range(m)]
        for i in range(m):
            for j in range(n):
                if i == 0 and j == 0:
                    dp[i][j] = 0 if mat[i][j] == 0 else m + n
                elif i == 0:
                    dp[i][j] = dp[i][j - 1] + 1 if mat[i][j] == 1 else 0
                elif j == 0:
                    dp[i][j] = dp[i - 1][j] + 1 if mat[i][j] == 1 else 0
                else:
                    dp[i][j] = 0 if mat[i][j] == 0 else min(dp[i - 1][j], dp[i][j - 1]) + 1
        for i in range(m - 1, -1, -1):
            for j in range(n - 1, -1, -1):
                if i == m - 1 and j == n - 1:
                    dp[i][j] = 0 if mat[i][j] == 0 else dp[i][j]
                elif i == m - 1:
                    dp[i][j] = min(dp[i][j], dp[i][j + 1] + 1)
                elif j == n - 1:
                    dp[i][j] = min(dp[i][j], dp[i + 1][j] + 1)
                else:
                    dp[i][j] = 0 if mat[i][j] == 0 else min(dp[i][j], min(dp[i + 1][j], dp[i][j + 1]) + 1)
        return dp
相关推荐
LNTON羚通39 分钟前
摄像机视频分析软件下载LiteAIServer视频智能分析平台玩手机打电话检测算法技术的实现
算法·目标检测·音视频·监控·视频监控
哭泣的眼泪4082 小时前
解析粗糙度仪在工业制造及材料科学和建筑工程领域的重要性
python·算法·django·virtualenv·pygame
清炒孔心菜2 小时前
每日一题 LCR 078. 合并 K 个升序链表
leetcode
Microsoft Word3 小时前
c++基础语法
开发语言·c++·算法
天才在此3 小时前
汽车加油行驶问题-动态规划算法(已在洛谷AC)
算法·动态规划
莫叫石榴姐4 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
茶猫_5 小时前
力扣面试题 - 25 二进制数转字符串
c语言·算法·leetcode·职场和发展
肥猪猪爸7 小时前
使用卡尔曼滤波器估计pybullet中的机器人位置
数据结构·人工智能·python·算法·机器人·卡尔曼滤波·pybullet
readmancynn7 小时前
二分基本实现
数据结构·算法
萝卜兽编程7 小时前
优先级队列
c++·算法