线性代数的学习和整理12: 矩阵与行列式,计算上的差别对比

目录

[1 行列式和矩阵的比较](#1 行列式和矩阵的比较)

[2 简单总结矩阵与行列式的不同](#2 简单总结矩阵与行列式的不同)

[3 加减乘除的不同](#3 加减乘除的不同)

[3.1 加法不同](#3.1 加法不同)

[3.2 减法不同](#3.2 减法不同)

[3.3 标量乘法/数乘](#3.3 标量乘法/数乘)

[3.3.1 标准的数乘对比](#3.3.1 标准的数乘对比)

[3.3.2 其他数乘对比](#3.3.2 其他数乘对比)

[3.4 乘法](#3.4 乘法)

[4 初等线性变换的不同](#4 初等线性变换的不同)

[4.1 对矩阵进行线性变换](#4.1 对矩阵进行线性变换)

[4.2 对行列式进行线性变换呢?](#4.2 对行列式进行线性变换呢?)


1 行列式和矩阵的比较

  • 如果矩阵行数列数相等,那么这个矩阵是方阵,只有方阵才有行列式
  • 行列式必须是行列数相等。
  • 行列式是方阵的一种特殊运算,加减乘除规则都和矩阵不同

2 简单总结矩阵与行列式的不同

  • 区别1
  1. 矩阵是一个n*m的数表 矩阵是多个向量 ; 矩阵的行数和列数可以不同;
  2. 行列式是一个n阶的方阵;
  • 区别2
  1. 矩阵不能从整体上被看成一个数, 矩阵是多个向量 ;
  2. 行列式最终可以算出来变成一个数;
  • 区别3
  1. 加法不同
  2. 减法不同
  3. 数乘不同
  4. 乘法完全不同,不可比
  • 区别4
  1. 线性变化的交换,行列式不同
  2. 线性变化的倍数,行列式不同
  3. 线性变化的倍加,行列式不变,是相同的

3 加减乘除的不同

3.1 加法不同

  • 矩阵加法,两个矩阵都是n*m,A+B = 对应元素相加
  • 行列式加法,两个矩阵都是n*m,A+B = 对应元素相加

3.2 减法不同

  • 减法的差别,参考加法

3.3 标量乘法/数乘

3.3.1 标准的数乘对比

  • 矩阵的标量乘法 λ*A=λ*每个元素,*A*B=A*λ*B
  • 行列式的标量乘法,λ*|A|=λ*某1行/列

3.3.2 其他数乘对比

  • 矩阵的标量乘法 (λ*A)=λ*(A)和标准的数乘无差别
  • 行列式的标量乘法,|λ*A|=λ^n*|A| ,其中n是满秩矩阵A的秩/维度
  • 原因是,每行的λ 都可以提出来,因此是n 个λ 相乘=λ^n

3.4 乘法

  • 矩阵乘法
  1. 矩阵乘法:点乘
  2. 矩阵乘法:叉乘
  • 行列数乘法: |Ann*Bnn| =|Ann|*|Bnn|
  • 行列数乘法: |2Ann*Bnn| =|2Ann|*|Bnn| =2^n*|Ann|*|Bnn|

4 初等线性变换的不同

线性变换包含,行的线性变换和列的线性变换

行的线性变换

  1. 行之间,交换
  2. 某行乘以倍数
  3. 某行乘倍数+到其他行

列的线性变换

  1. 列之间,交换
  2. 某列乘以倍数
  3. 某列乘倍数+到其他列

4.1 对矩阵进行线性变换

  • 无论是线性行变换,还是线性列变换,矩阵的不变
  • 矩阵进行线性变换后的结果
  1. 线性变换前后系统的特征值不变;
  2. 线性变换前后系统的传递函数矩阵不变;

4.2 对行列式进行线性变换呢?

  • **交换:**如果交换行列式|A| 的任意两行/列,增加一个负号-
  • **倍数:**如果行列式|A| 某1行或列*λ,|A| 变成 λ*|A|
  • **倍加:**如果行列式|A| 某1行或列*λ后,再加到另外某1行/列,|A| 不变还是=|A|
  • 总结,只有进行倍加的线性变换之后,行列式才不变化

解释原因

  • 因为行列式其实代表有向的面积比,所以交换行列式|A| 的任意两行/列,增加一个负号-
  • 因为行列式的标量乘法 λ*|A|= 把行列式的某1行/列* λ,所以行列式|A| 某1行或列*λ,|A| 变成 λ*|A|
  • 因为行列式其实代表有向的面积比,所以行列式|A| 某1行或列*λ后,再加到另外某1行/列,|A| 不变还是=|A|
相关推荐
DKPT4 分钟前
Java设计模式之结构型模式(外观模式)介绍与说明
java·开发语言·笔记·学习·设计模式
编程小白gogogo25 分钟前
Spring学习笔记
笔记·学习·spring
qq_5278878732 分钟前
【学习笔记】Python中主函数调用的方式
笔记·学习
Chef_Chen1 小时前
从0开始学习R语言--Day37--CMH检验
学习
hjs_deeplearning3 小时前
认知篇#10:何为分布式与多智能体?二者联系?
人工智能·分布式·深度学习·学习·agent·智能体
静心问道10 小时前
XLSR-Wav2Vec2:用于语音识别的无监督跨语言表示学习
人工智能·学习·语音识别
懒惰的bit10 天前
STM32F103C8T6 学习笔记摘要(四)
笔记·stm32·学习
Jay_51510 天前
C++ STL 模板详解:由浅入深掌握标准模板库
c++·学习·stl
冰茶_10 天前
ASP.NET Core API文档与测试实战指南
后端·学习·http·ui·c#·asp.net
丶Darling.10 天前
深度学习与神经网络 | 邱锡鹏 | 第五章学习笔记 卷积神经网络
深度学习·神经网络·学习