R语言快速生成三线表(1)

R语言的优势在于批量处理,常使用到循环和函数,三线表是科研文章中必备的内容。利用函数实现自动判断数据类型和计算。使用R包(table1)。

复制代码
# 创建连续性变量
continuous_var1 <- c(1.2, 2.5, 3.7, 4.8, 5.9)
continuous_var2 <- c(10.5, 20.3, 15.2, 8.7, 12.1)
continuous_var3 <- c(0.3, 0.7, 1.1, 2.0, 1.5)

# 创建分类变量
category_var1 <- factor(c("A", "B", "A", "C", "B"))
category_var2 <- factor(c("X", "Y", "Z", "X", "Z"))
category_var3 <- factor(c("High", "Low", "Medium", "Medium", "High"))

# 创建data.frame
df <- data.frame(
  ContinuousVar1 = continuous_var1,
  ContinuousVar2 = continuous_var2,
  ContinuousVar3 = continuous_var3,
  CategoryVar1 = category_var1,
  CategoryVar2 = category_var2,
  CategoryVar3 = category_var3
)

# 显示data.frame
df

#generate three line table
#pvalue
pvalue <- function(x, name, ...){
  y <- df[[name]]#variable
  g <- df[,"Group"]#Group
  if (is.numeric(y)) {
    if (shapiro.test(y)$p.value>0.05){
      p <- t.test(y ~ g)$p.value
      p_with_symbol <- paste0(format.pval(p, digits = 3, eps = 0.001), "*")
    }else{
      p <- wilcox.test(y ~ g)$p.value
      p_with_symbol <- paste0(format.pval(p, digits = 3, eps = 0.001), "**")
      }
  }else{
    if (length(y) > 40 & any(sapply(chisq.test(y,g)$expected, function(x) x >=1))){
      p <- chisq.test(y, g)$p.value
      p_with_symbol <- paste0(format.pval(p, digits = 3, eps = 0.001,trim = FALSE), "#")
      } else {
        p<-fisher.test(y,g)$p.value
        p_with_symbol <- paste0(format.pval(p, digits = 3, eps = 0.001), "##")
      }
  }
  c("",  p_with_symbol)
}

#自定义函数准备显示统计值(t值或卡方值)
stat_value <- function(x, name, ...) {
  y <- df[[name]] # 变量
  g <- df[,"Group"] # 分组变量
  if (is.numeric(y)) {
    # 连续变量使用 t 检验或 Mann-Whitney U 测试
    if (shapiro.test(y)$p.value > 0.05) {
      s <- abs(t.test(y ~ g)$statistic[["t"]]) # 正态分布,使用 t 检验
    } else {
      s <- wilcox.test(y ~ g)[["statistic"]][["W"]] # 非正态分布,使用 Mann-Whitney U 测试
    }
  } else {
    if(length(y) > 40 & any(sapply(chisq.test(y,g)$expected, function(x) x >=1))){
      s<-chisq.test(y, g)$statistic[["X-squared"]]
    } else {
      s<-fisher.test(y, g)$statistic[["X-squared"]]
    }
    # 分类变量使用卡方检验
    s <- chisq.test(y, g)$statistic[["X-squared"]]
  }
  c("",  format.pval(s, digits=3, eps=0.001))
}
#定义变量的展现形式
# rndr <- function(x, name, ...) {
#   if (!is.numeric(x)) return(render.categorical.default(x))
#   what <- switch(name,
#                  Age = "Median [Min, Max]",
#                  `Survival months` = "Median [Min, Max]"
#   )
#   parse.abbrev.render.code(c("", what))(x)
# }

#绘图
library(table1)
paste(sprintf("`%s`",colnames(df)),collapse="+")
df$Group<-c(rep("A",2),rep("B",3))
table<-table1(~`ContinuousVar1`+`ContinuousVar2`+`ContinuousVar3`+`CategoryVar1`+`CategoryVar2`+`CategoryVar3`|Group,ender=rndr,data=df,extra.col=list(`Statistics`=stat_value,`P-value`=pvalue))
复制代码
#保存为docx
library(flextable);help(package="flextable")
table_fl<-t1flex(table)
save_as_docx(table_fl,path="table.docx")
相关推荐
江上月5136 小时前
Pandas 高级教程:解锁数据分析的强大潜能
数据挖掘·数据分析·pandas
wasp5206 小时前
Apache Hudi 项目总体分析
数据挖掘·apache·hudi·数据湖仓
deng12048 小时前
基于LeNet-5的图像分类小结
人工智能·分类·数据挖掘
大千AI助手11 小时前
概率单位回归(Probit Regression)详解
人工智能·机器学习·数据挖掘·回归·大千ai助手·概率单位回归·probit回归
Learn Beyond Limits14 小时前
Data Preprocessing|数据预处理
大数据·人工智能·python·ai·数据挖掘·数据处理
人大博士的交易之路18 小时前
龙虎榜——20251128
大数据·数学建模·数据挖掘·数据分析·缠论·龙虎榜·道琼斯结构
空影星19 小时前
轻量日记神器RedNotebook,高效记录每一天
python·数据挖掘·数据分析·音视频
XINVRY-FPGA2 天前
XCVP1802-2MSILSVC4072 AMD Xilinx Versal Premium Adaptive SoC FPGA
人工智能·嵌入式硬件·fpga开发·数据挖掘·云计算·硬件工程·fpga
c***42102 天前
爬虫基础之爬取某基金网站+数据分析
爬虫·数据挖掘·数据分析
hacker7073 天前
openGauss 在K12教育场景的数据处理测评:CASE WHEN 实现高效分类
人工智能·分类·数据挖掘