机器学习之损失函数(Loss Function)

损失函数(Loss Function)是机器学习和深度学习中的关键概念,它用于衡量模型的预测与实际目标之间的差异或误差。损失函数的选择对于模型的训练和性能评估至关重要,不同的任务和问题通常需要不同的损失函数。

以下是一些常见的损失函数以及它们在不同任务中的应用:

  1. 均方误差(Mean Squared Error,MSE)

    • 用于回归问题,衡量模型的预测值与实际值之间的平方误差的平均值。
    • MSE = (1/n) * Σ(yi - ŷi)²,其中 yi 是实际值,ŷi 是预测值,n 是样本数量。
  2. 平均绝对误差(Mean Absolute Error,MAE)

    • 用于回归问题,衡量模型的预测值与实际值之间的绝对误差的平均值。
    • MAE = (1/n) * Σ|yi - ŷi|。
  3. 交叉熵损失(Cross-Entropy Loss)

    • 用于分类问题,衡量模型的分类概率分布与实际标签之间的差异。
    • 对于二分类问题:Binary Cross-Entropy Loss。
    • 对于多分类问题:Categorical Cross-Entropy Loss。
  4. 对数损失(Log Loss)

    • 通常用于二分类问题,是交叉熵损失的一种形式。
    • Log Loss = -Σ(yi * log(ŷi) + (1 - yi) * log(1 - ŷi))。
  5. 胜者通吃损失(Hinge Loss)

    • 用于支持向量机(SVM)等分类问题,鼓励模型使正确分类的边际更大。
    • Hinge Loss = Σmax(0, 1 - yi * ŷi),其中 yi 是真实标签,ŷi 是模型的预测。
  6. Huber损失

    • 用于回归问题,是均方误差(MSE)和平均绝对误差(MAE)的混合,对异常值不敏感。
  7. 自定义损失

    • 针对特定问题,可以定义自定义损失函数,以满足任务的特殊需求。

选择适当的损失函数取决于您的问题类型和任务目标。在训练过程中,优化算法会尝试最小化损失函数,以调整模型参数,使其能够更好地拟合训练数据和泛化到新数据。不同的损失函数会导致不同的训练行为和模型性能,因此选择合适的损失函数是非常重要的。

相关推荐
数科云5 小时前
AI提示词(Prompt)入门:什么是Prompt?为什么要写好Prompt?
人工智能·aigc·ai写作·ai工具集·最新ai资讯
Devlive 开源社区5 小时前
技术日报|Claude Code超级能力库superpowers登顶日增1538星,自主AI循环ralph爆火登榜第二
人工智能
软件供应链安全指南5 小时前
灵脉 IAST 5.4 升级:双轮驱动 AI 漏洞治理与业务逻辑漏洞精准检测
人工智能·安全
lanmengyiyu6 小时前
单塔和双塔的区别和共同点
人工智能·双塔模型·网络结构·单塔模型
微光闪现6 小时前
AI识别宠物焦虑、紧张和晕车行为,是否已经具备实际可行性?
大数据·人工智能·宠物
技术小黑屋_6 小时前
用好Few-shot Prompting,AI 准确率提升100%
人工智能
中草药z6 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型
知乎的哥廷根数学学派7 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
DisonTangor7 小时前
GLM-Image:面向密集知识与高保真图像生成的自回归模型
人工智能·ai作画·数据挖掘·回归·aigc
哥布林学者7 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(一)词汇表征和类比推理
深度学习·ai