【宝藏数据集】MCOD:多光谱伪装目标检测首个挑战性基准

最近挖到一个计算机视觉领域的稀缺宝藏数据集 ------MCOD,它是首个专门为多光谱伪装目标检测设计的挑战性基准数据集,已被 MM '25(第 33 届 ACM 国际多媒体会议)收录,对做伪装目标检测、多光谱图像处理相关研究的小伙伴来说太实用了,赶紧存下来分享一波!

📝 数据集核心价值

传统伪装目标检测(COD)数据集多基于 RGB 单模态,在小目标、极端光照等复杂场景下难以提供有效支撑,而 MCOD 填补了这一空白 ------ 它聚焦多光谱伪装目标检测,通过融合丰富的光谱信息,大幅提升前景与背景的区分度。作为该领域首个多光谱基准数据集,能为相关算法的开发、验证提供高质量真实场景数据,有效突破 RGB-based 方法的性能瓶颈。

👥 研发团队

由北京理工大学团队打造:Yang Li、Tingfa Xu、ShuYan Bai、Peifu Liu、Jianan Li

📊 数据集核心优势

  1. 全面的挑战属性:覆盖伪装目标检测中常见的真实难点,如小目标尺寸、极端光照条件等;
  2. 多样的真实场景:涵盖广泛的自然环境,更贴合实际应用场景;
  3. 高质量像素级标注:每张图像均经过人工标注,包含精准的目标掩码和对应的挑战属性标签。

📥 自用备份版下载(已亲存网盘)

我已经把数据集存到自己网盘啦,方便大家直接获取:

🔗 完整资源链(溯源必备)

💡 我自己已经备份好了,分享出来一是方便大家取用,二是给自己留个存档(免得后续找不着)。实验表明,在 MCOD 数据集上,多光谱模态能显著缓解复杂场景下检测性能的下降,做相关方向研究的同学千万别错过,使用时记得引用原论文哦~ 数据集采用 CC BY-NC-ND 4.0 许可协议,仅用于学术研究,如需修改或二次分发需获得授权。

相关推荐
L、218几秒前
深入理解CANN:面向AI加速的异构计算架构详解
人工智能·架构
chaser&upper7 分钟前
预见未来:在 AtomGit 解码 CANN ops-nn 的投机采样加速
人工智能·深度学习·神经网络
松☆10 分钟前
CANN与大模型推理:在边缘端高效运行7B参数语言模型的实践指南
人工智能·算法·语言模型
结局无敌16 分钟前
深度探究cann仓库下的infra:AI计算的底层基础设施底座
人工智能
m0_4665252917 分钟前
绿盟科技风云卫AI安全能力平台成果重磅发布
大数据·数据库·人工智能·安全
慢半拍iii18 分钟前
从零搭建CNN:如何高效调用ops-nn算子库
人工智能·神经网络·ai·cnn·cann
机器懒得学习22 分钟前
智能股票分析系统
python·深度学习·金融
晟诺数字人23 分钟前
2026年海外直播变革:数字人如何改变游戏规则
大数据·人工智能·产品运营
蛋王派23 分钟前
DeepSeek-OCR-v2 模型解析和部署应用
人工智能·ocr
vx_biyesheji000127 分钟前
豆瓣电影推荐系统 | Python Django 协同过滤 Echarts可视化 深度学习 大数据 毕业设计源码
大数据·爬虫·python·深度学习·django·毕业设计·echarts