systemverilog之program与module的区别

为避免仿真和设计竞争问题(race condition),systemverilog中引入了program的概念。

在Verilog中,调度如下图所示:

从图中可以看出,阻塞赋值与非阻塞赋值的调度是不一样的,其中#0的阻塞延时赋值则处在中间的调度区域。

对于systemverilog来说,就多添加了几种调度区域。如下图所示

前三个为Verilog准备的,observed处于中间部分,是为SV中的属性断言准备的,该区域的值已经稳定,避免了因采集数据不稳定而导致的属性断言错误。在reactive域正式进行断言判断。

通过几个栗子说明情况:

复制代码
module counter(input clk);
  bit [3:0] cnt;

  always @(posedge clk) begin
    cnt <= cnt + 3;
    $display("%0t DUT cnt = %0d", $time, cnt);
  end
endmodule

module tb1;
bit clk;
bit [3:0] cnt;

  initial begin
    forever #5ns clk <= ~clk;
  end
  counter counter_inst(clk);
  always @(posedge clk) begin
    $display("%0t TB cnt = %0d", $time, counter_inst.cnt);
  end
endmodule

仿真结果如下:

复制代码
run 50ns
# 5 DUT cnt = 0
# 5 TB cnt = 0
# 15 DUT cnt = 3
# 15 TB cnt = 3
# 25 DUT cnt = 6
# 25 TB cnt = 6
# 35 DUT cnt = 9
# 35 TB cnt = 9
# 45 DUT cnt = 12
# 45 TB cnt = 12

因为打印函数处于active调度区域,非阻塞赋值处于NBA调度区域,因此采样到的是变化前的值,即#5时采样得到的是0不是1;其他同理。

如果我们把仿真激励改为如下:

复制代码
module tb2;
bit clk1;
bit clk2;
bit [3:0] cnt;

  initial begin
    forever #5ns clk1 <= !clk1;
  end

  always @(clk1) begin
    clk2 <= clk1;
  end

  counter dut(clk1);

  always @(posedge clk2) begin
    $display("%0t TB cnt = %0d", $time, dut.cnt);
  end
endmodule

那么仿真结果则如下:

复制代码
run 50ns
# 5 DUT cnt = 0
# 5 TB cnt = 3
# 15 DUT cnt = 3
# 15 TB cnt = 6
# 25 DUT cnt = 6
# 25 TB cnt = 9
# 35 DUT cnt = 9
# 35 TB cnt = 12
# 45 DUT cnt = 12
# 45 TB cnt = 15

这是因为clk2和clk1之间存在非阻塞赋值,赋值区域在NBA区,按照先后顺序,一个采样得到的是变化前的值,一个得到的是变化后的值。

因此我们如果Testbench中也一味地使用module,就有可能出现上述第二种问题,在此我不是说这种不行,而是我们需要能控制住采样时刻。那么如果我们有时候需要采样第二种情况,难道每次都需要这样做吗?使用两个采样信号?

在SV中,我们可以使用Program实现上述情况:

假设我们把第一种testbench改为program,如下所示:

复制代码
module counter(input clk);
    bit [3:0] cnt;
  
    always @(posedge clk) begin
      cnt <= cnt + 1;
      $display("@%0t DUT cnt = %0d", $time, cnt);
    end
  endmodule
  
program dsample(input clk);
  
    initial begin
      forever begin
        @(posedge clk); 
        $display("@%0t TB cnt = %0d", $time, dut.cnt);
      end
    end
endprogram
  
  
module test_tb_top;
  bit clk1;
  bit [3:0] cnt;
  
    initial begin
      forever #5ns clk1 <= !clk1;
    end
  
    counter dut(clk1);
    dsample spl(clk1);
endmodule

此时仿真结果和第二次一致,这是因为program的采样是在reactive中进行的,此时数据已经是变化后的稳定值,不会出现竞争的情况。

因此,我们一般推荐在Testbench中使用program,在设计dut中使用module,在顶层module中例化dut的module和 testbench的program。

program中的注意点:

  • program中不能例化其他program和module
  • 不能出现interface和always,可以使用initial forever替代always
  • program内部可以发起多个initial块
  • program中内部定义的变量最好采用阻塞赋值,当然采用非阻塞仿真器也不会产生error,驱动外部信号则应该采用非阻塞赋值
  • program中的initial块和module中的initial块执行位置不同,前者在reactive,后者在active块中执行。
  • program中存在的多个initial块中,如果有一个initial采用了退出系统函数$exit(),则会结束该program,而不仅仅是该initial块。
相关推荐
hahaha601633 分钟前
FPGA静态功耗
fpga开发
碎碎思39 分钟前
FPGA定点和浮点数学运算-实例对比
fpga开发
GateWorld12 小时前
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析LLP (二)
fpga开发·mipi csi2
hahaha60161 天前
Xilinx 325T FPGA 中的 GT(GTP 或 GTX)收发器和普通 LVDS 接口的差模和共模电压
fpga开发
hahaha60161 天前
FPGA没有使用的IO悬空对漏电流有没有影响
fpga开发
贝塔实验室2 天前
FPGA 动态重构配置流程
驱动开发·fpga开发·硬件架构·硬件工程·射频工程·fpga·基带工程
GateWorld2 天前
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
fpga开发·mipi csi2
思尔芯S2C2 天前
思尔芯携手Andes晶心科技,加速先进RISC-V 芯片开发
人工智能·科技·fpga开发·risc-v·debugging·prototyping·soc validation
tiantianuser2 天前
RDMA简介5之RoCE v2队列
fpga开发·verilog·fpga·rdma·高速传输·rocev2
碎碎思2 天前
打破延迟极限的 FPGA 机械键盘
fpga开发·计算机外设