机器视觉之平面物体检测

平面物体检测是计算机视觉中的一个重要任务,它通常涉及检测和识别在图像或视频中出现的平面物体,如纸张、标志、屏幕、牌子等。下面是一个使用C++和OpenCV进行平面物体检测的简单示例,使用了图像中的矩形轮廓检测方法:

cpp 复制代码
#include <opencv2/opencv.hpp>

int main() {
    // 读取图像
    cv::Mat image = cv::imread("image.jpg");

    // 将图像转换为灰度图
    cv::Mat gray;
    cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY);

    // 对灰度图进行边缘检测
    cv::Mat edges;
    cv::Canny(gray, edges, 50, 150, 3);

    // 查找图像中的轮廓
    std::vector<std::vector<cv::Point>> contours;
    cv::findContours(edges, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE);

    // 在图像上绘制检测到的轮廓
    cv::Mat result = image.clone();
    cv::drawContours(result, contours, -1, cv::Scalar(0, 255, 0), 2);

    // 显示结果图像
    cv::imshow("Detected Objects", result);
    cv::waitKey(0);

    return 0;
}

示例演示了如何使用OpenCV进行平面物体检测的基本步骤:

  1. 读取图像并将其转换为灰度图像。
  2. 对灰度图像进行边缘检测以突出物体的轮廓。
  3. 使用cv::findContours函数查找图像中的轮廓。
  4. 绘制检测到的轮廓并可视化结果。
相关推荐
王哈哈^_^11 小时前
【数据集】【YOLO】【目标检测】共享单车数据集,共享单车识别数据集 3596 张,YOLO自行车识别算法实战训推教程。
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
std787912 小时前
MATLAB 实用案例三:图像边缘检测、数据拟合与可视化、信号处理
图像处理·opencv·计算机视觉
躺平的赶海人14 小时前
Halcon实战:精准定位与提取:基于形态学处理的猴子眼睛区域检测完整方案
图像处理·计算机视觉·halcon·形态学操作
_168168ww15 小时前
计算机大类常见单词
计算机视觉
CoovallyAIHub15 小时前
OCR战场再起风云:LightOnOCR-1B凭什么比DeepSeekOCR快1.7倍?(附演示开源地址)
深度学习·算法·计算机视觉
zhangrelay16 小时前
如何使用AI快速编程实现标注ROS2中sensor_msgs/msg/Image图像色彩webots2025a
人工智能·笔记·opencv·学习·计算机视觉·机器人视觉
萧鼎16 小时前
深入掌握 OpenCV-Python:从图像处理到智能视觉
图像处理·python·opencv
TechNomad16 小时前
十八、OpenCV中的滤波与卷积
opencv
搞科研的小刘选手19 小时前
【多所高校合作】第四届图像处理、计算机视觉与机器学习国际学术会议(ICICML 2025)
图像处理·人工智能·机器学习·计算机视觉·数据挖掘·人脸识别·人机交互
Coovally AI模型快速验证19 小时前
未来已来:从 CVPR & ICCV 观察 2025→2026 年计算机视觉的七大走向
人工智能·深度学习·目标检测·计算机视觉·stable diffusion