机器视觉之平面物体检测

平面物体检测是计算机视觉中的一个重要任务,它通常涉及检测和识别在图像或视频中出现的平面物体,如纸张、标志、屏幕、牌子等。下面是一个使用C++和OpenCV进行平面物体检测的简单示例,使用了图像中的矩形轮廓检测方法:

cpp 复制代码
#include <opencv2/opencv.hpp>

int main() {
    // 读取图像
    cv::Mat image = cv::imread("image.jpg");

    // 将图像转换为灰度图
    cv::Mat gray;
    cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY);

    // 对灰度图进行边缘检测
    cv::Mat edges;
    cv::Canny(gray, edges, 50, 150, 3);

    // 查找图像中的轮廓
    std::vector<std::vector<cv::Point>> contours;
    cv::findContours(edges, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE);

    // 在图像上绘制检测到的轮廓
    cv::Mat result = image.clone();
    cv::drawContours(result, contours, -1, cv::Scalar(0, 255, 0), 2);

    // 显示结果图像
    cv::imshow("Detected Objects", result);
    cv::waitKey(0);

    return 0;
}

示例演示了如何使用OpenCV进行平面物体检测的基本步骤:

  1. 读取图像并将其转换为灰度图像。
  2. 对灰度图像进行边缘检测以突出物体的轮廓。
  3. 使用cv::findContours函数查找图像中的轮廓。
  4. 绘制检测到的轮廓并可视化结果。
相关推荐
LOnghas12111 小时前
长须鲸目标检测_YOLO13-C3k2-OREPA改进方案实战
人工智能·目标检测·计算机视觉
PeterClerk2 小时前
计算机视觉常用指标(Metrics)速查与解释(持续更新)
人工智能·python·深度学习·计算机视觉·benchmark·评测
brent4235 小时前
DAY52 通道注意力(SE注意力)
人工智能·深度学习·计算机视觉
qunaa01016 小时前
钻井作业场景下设备与产品识别与检测:基于YOLO11-SRFD的目标检测系统实现与应用
人工智能·目标检测·计算机视觉
一见6 小时前
如何安装 dlib 和 OpenCV(不带 Python 绑定)
人工智能·python·opencv
笑脸惹桃花6 小时前
目标检测数据集——纺织品织物缺陷检测数据集
人工智能·yolo·目标检测·计算机视觉
li星野6 小时前
OpenCV4X学习—图像平滑、几何变换
图像处理·学习·计算机视觉
做cv的小昊6 小时前
3DGS加速&压缩指标评测方法、高斯数量变化曲线绘制——Training Time、FPS、Gaussian Number、Peak Memory
笔记·计算机视觉·3d·开源·github·图形渲染·3dgs
友思特 智能感知7 小时前
友思特案例 | 金属行业视觉检测案例一:彩涂钢板卷对卷检测
人工智能·计算机视觉·视觉检测·缺陷检测
weixin_413063217 小时前
opencv calib3d 模块 usac magsac Gamma 查表值验证
opencv·计算机视觉