机器视觉之平面物体检测

平面物体检测是计算机视觉中的一个重要任务,它通常涉及检测和识别在图像或视频中出现的平面物体,如纸张、标志、屏幕、牌子等。下面是一个使用C++和OpenCV进行平面物体检测的简单示例,使用了图像中的矩形轮廓检测方法:

cpp 复制代码
#include <opencv2/opencv.hpp>

int main() {
    // 读取图像
    cv::Mat image = cv::imread("image.jpg");

    // 将图像转换为灰度图
    cv::Mat gray;
    cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY);

    // 对灰度图进行边缘检测
    cv::Mat edges;
    cv::Canny(gray, edges, 50, 150, 3);

    // 查找图像中的轮廓
    std::vector<std::vector<cv::Point>> contours;
    cv::findContours(edges, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE);

    // 在图像上绘制检测到的轮廓
    cv::Mat result = image.clone();
    cv::drawContours(result, contours, -1, cv::Scalar(0, 255, 0), 2);

    // 显示结果图像
    cv::imshow("Detected Objects", result);
    cv::waitKey(0);

    return 0;
}

示例演示了如何使用OpenCV进行平面物体检测的基本步骤:

  1. 读取图像并将其转换为灰度图像。
  2. 对灰度图像进行边缘检测以突出物体的轮廓。
  3. 使用cv::findContours函数查找图像中的轮廓。
  4. 绘制检测到的轮廓并可视化结果。
相关推荐
柠檬07111 小时前
fillPoly 函数
opencv
Hi202402172 小时前
如何通过选择正确的畸变模型解决相机标定难题
人工智能·数码相机·计算机视觉·自动驾驶
棒棒的皮皮3 小时前
【深度学习】YOLO模型精度优化 Checklist
人工智能·深度学习·yolo·计算机视觉
dazzle4 小时前
计算机视觉处理(OpenCV基础教学(十九):图像轮廓特征查找技术详解)
人工智能·opencv·计算机视觉
木头程序员5 小时前
大模型边缘部署突破:动态推理技术与精度-延迟-能耗帕累托优化
大数据·人工智能·计算机视觉·自然语言处理·智能手机·数据挖掘
AI即插即用6 小时前
超分辨率重建 | CVPR 2024 DarkIR:轻量级低光照图像增强与去模糊模型(代码实践)
图像处理·人工智能·深度学习·神经网络·计算机视觉·超分辨率重建
MF_AI8 小时前
苹果病害检测识别数据集:1w+图像,5类,yolo标注
图像处理·人工智能·深度学习·yolo·计算机视觉
柳鲲鹏8 小时前
OpenCV视频实时跟踪目标,多种算法,python版
opencv·算法·音视频
美狐美颜sdk9 小时前
Android直播美颜SDK:选择指南与开发方案
android·人工智能·计算机视觉·第三方美颜sdk·视频美颜sdk·人脸美型sdk
sali-tec9 小时前
C# 基于OpenCv的视觉工作流-章7-膨胀
图像处理·人工智能·opencv·算法·计算机视觉