机器视觉之平面物体检测

平面物体检测是计算机视觉中的一个重要任务,它通常涉及检测和识别在图像或视频中出现的平面物体,如纸张、标志、屏幕、牌子等。下面是一个使用C++和OpenCV进行平面物体检测的简单示例,使用了图像中的矩形轮廓检测方法:

cpp 复制代码
#include <opencv2/opencv.hpp>

int main() {
    // 读取图像
    cv::Mat image = cv::imread("image.jpg");

    // 将图像转换为灰度图
    cv::Mat gray;
    cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY);

    // 对灰度图进行边缘检测
    cv::Mat edges;
    cv::Canny(gray, edges, 50, 150, 3);

    // 查找图像中的轮廓
    std::vector<std::vector<cv::Point>> contours;
    cv::findContours(edges, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE);

    // 在图像上绘制检测到的轮廓
    cv::Mat result = image.clone();
    cv::drawContours(result, contours, -1, cv::Scalar(0, 255, 0), 2);

    // 显示结果图像
    cv::imshow("Detected Objects", result);
    cv::waitKey(0);

    return 0;
}

示例演示了如何使用OpenCV进行平面物体检测的基本步骤:

  1. 读取图像并将其转换为灰度图像。
  2. 对灰度图像进行边缘检测以突出物体的轮廓。
  3. 使用cv::findContours函数查找图像中的轮廓。
  4. 绘制检测到的轮廓并可视化结果。
相关推荐
CV实验室16 小时前
AAAI 2026 Oral 之江实验室等提出MoEGCL:在6大基准数据集上刷新SOTA,聚类准确率最高提升超8%!
人工智能·机器学习·计算机视觉·数据挖掘·论文·聚类
QTreeY12317 小时前
detr目标检测+deepsort/strongsort/bytetrack/botsort算法的多目标跟踪实现
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
侯孟禹21 小时前
海康摄像机SDK获取视频流转码显示
opencv
yolo_guo1 天前
opencv 学习: QA_01 什么是图像锐化
linux·c++·opencv·计算机视觉
QTreeY1231 天前
yolov5/8/9/10/11/12/13+deep-oc-sort算法的目标跟踪实现
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
nnn__nnn1 天前
图像分割技术全解析:从传统算法到深度学习的视觉分割革命
深度学习·算法·计算机视觉
Stara05111 天前
DeepSeek-OCR私有化部署—从零构建OCR服务环境
计算机视觉·docker·ocr·transformers·vllm·deepseek·光学符号识别
qy-ll2 天前
遥感论文学习
人工智能·深度学习·计算机视觉·gan·遥感·栅格化
徽4402 天前
YOLOv5植物模型开发综述
人工智能·目标检测·计算机视觉
CS创新实验室2 天前
OpenCV:从经典到现代,计算机视觉的基石与未来
人工智能·opencv·计算机视觉·cv