pytorch内存泄漏

问题描述:

内存泄漏积累过多最终会导致内存溢出,当内存占用过大,进程会被killed掉。

解决过程:

在代码的运行阶段输出内存占用量,观察在哪一块存在内存剧烈增加或者显存异常变化的情况。但是在这个过程中要分级确认问题点,也即如果存在三个文件main.pytrain.pymodel.py

在此种思路下,应该先在main.py中确定问题点,然后,从main.py中进入到train.py中,再次输出显存占用量,确定问题点在哪。随后,再从train.py中的问题点,进入到model.py中,再次确认。如果还有更深层次的调用,可以继续追溯下去。

python 复制代码
import psutil
process = psutil.Process()
current_memory = process.memory_info().rss
print(f"0--------------Current memory usage: {current_memory / (1024 ** 3):.4f} GB")

具体使用的代码

python 复制代码
for epoch in range(start_epoch+1, args.epochs+1):
        process = psutil.Process()
        current_memory = process.memory_info().rss
        print(f"0--------------Current memory usage: {current_memory / (1024 ** 3):.4f} GB")
        count_step = (epoch-1)*len(train_loader)  
        print(f"1--------------Current memory usage: {current_memory / (1024 ** 3):.4f} GB")
        mean_loss, lr = train_one_epoch(model, optimizer, train_loader, device, epoch, count_step,writer,lr_scheduler,
                                         print_freq=args.print_freq)
        print(f"2--------------Current memory usage: {current_memory / (1024 ** 3):.4f} GB")
        val_info = evaluate_vgg(model, epoch, val_loader, device, writer, num_classes=num_classes)
        print(f"3--------------Current memory usage: {current_memory / (1024 ** 3):.4f} GB")
        with open(results_file, "a") as f:
            # 记录每个epoch对应的train_loss、lr以及验证集各指标       
            train_info = f"[epoch: {epoch}]\n" \
                         f"train_loss: {mean_loss:.4f}\n" \
                         f"lr: {lr:.6f}\n"
            f.write(train_info + val_info + "\n\n")

        save_vgg_file = {"model": model.state_dict(),
                     "optimizer": optimizer.state_dict(),
                    #  "lr_scheduler": lr_scheduler.state_dict(),
                     "epoch": epoch,
                     "args": args}
        
        torch.save(save_vgg_file, 'checkpoints/fcn_model_Adam-StepLR_1e-2.pth')
        print(f"update checkpoints/fcn_model_Adam-StepLR_1e-2.pth")
        print(f"4--------------Current memory usage: {current_memory / (1024 ** 3):.4f} GB")

每个epoch训练完之后所占内存会不断增加,也就是说,每轮跑完之后会有冗余的数据一直在消耗内存。于是criterion、train_one_epoch、evaluate三个部分

criterion部分

Mem usage:5310 MiBtrain_one_epoch部分

Mem usage:4439 MiB

evaluate部分

Mem usage:10644

evaluate部分可以看到,所占用内存突然增大,并且之后的代码也占用了大量内存,继续监控得知在下一个epoch中criterion部分占用内存也是16064MiB,由此推测出内存消耗在evaluate部分

解决办法:

删除变量数据在for循环外,把暂时不用的可视化代码注释掉,发现占用内存变化很小

解决pytorch训练时的显存占用递增的问题
Pytorch训练过程中,显存(内存)爆炸解决方法
Python代码优化工具------memory_profiler

相关推荐
长桥夜波2 小时前
机器学习日报13
人工智能·机器学习
sensen_kiss2 小时前
INT305 Machine Learning 机器学习 Pt.8 Bagging 和 Boosting
人工智能·机器学习·boosting
艾莉丝努力练剑2 小时前
【Linux基础开发工具 (二)】详解Linux文本编辑器:Vim从入门到精通——完整教程与实战指南(上)
linux·运维·服务器·人工智能·ubuntu·centos·vim
我的世界伊若4 小时前
AI重塑IT职场:挑战与机遇并存
人工智能
lapiii3584 小时前
[智能体设计模式] 第4章:反思(Reflection)
人工智能·python·设计模式
IT_Beijing_BIT6 小时前
tensorflow 图像分类 之四
人工智能·分类·tensorflow
卡奥斯开源社区官方7 小时前
NVIDIA Blackwell架构深度解析:2080亿晶体管如何重构AI算力规则?
人工智能·重构·架构
百锦再7 小时前
第11章 泛型、trait与生命周期
android·网络·人工智能·python·golang·rust·go
数新网络10 小时前
The Life of a Read/Write Query for Apache Iceberg Tables
人工智能·apache·知识图谱
Yangy_Jiaojiao10 小时前
开源视觉-语言-动作(VLA)机器人项目全景图(截至 2025 年)
人工智能·机器人