pytorch内存泄漏

问题描述:

内存泄漏积累过多最终会导致内存溢出,当内存占用过大,进程会被killed掉。

解决过程:

在代码的运行阶段输出内存占用量,观察在哪一块存在内存剧烈增加或者显存异常变化的情况。但是在这个过程中要分级确认问题点,也即如果存在三个文件main.pytrain.pymodel.py

在此种思路下,应该先在main.py中确定问题点,然后,从main.py中进入到train.py中,再次输出显存占用量,确定问题点在哪。随后,再从train.py中的问题点,进入到model.py中,再次确认。如果还有更深层次的调用,可以继续追溯下去。

python 复制代码
import psutil
process = psutil.Process()
current_memory = process.memory_info().rss
print(f"0--------------Current memory usage: {current_memory / (1024 ** 3):.4f} GB")

具体使用的代码

python 复制代码
for epoch in range(start_epoch+1, args.epochs+1):
        process = psutil.Process()
        current_memory = process.memory_info().rss
        print(f"0--------------Current memory usage: {current_memory / (1024 ** 3):.4f} GB")
        count_step = (epoch-1)*len(train_loader)  
        print(f"1--------------Current memory usage: {current_memory / (1024 ** 3):.4f} GB")
        mean_loss, lr = train_one_epoch(model, optimizer, train_loader, device, epoch, count_step,writer,lr_scheduler,
                                         print_freq=args.print_freq)
        print(f"2--------------Current memory usage: {current_memory / (1024 ** 3):.4f} GB")
        val_info = evaluate_vgg(model, epoch, val_loader, device, writer, num_classes=num_classes)
        print(f"3--------------Current memory usage: {current_memory / (1024 ** 3):.4f} GB")
        with open(results_file, "a") as f:
            # 记录每个epoch对应的train_loss、lr以及验证集各指标       
            train_info = f"[epoch: {epoch}]\n" \
                         f"train_loss: {mean_loss:.4f}\n" \
                         f"lr: {lr:.6f}\n"
            f.write(train_info + val_info + "\n\n")

        save_vgg_file = {"model": model.state_dict(),
                     "optimizer": optimizer.state_dict(),
                    #  "lr_scheduler": lr_scheduler.state_dict(),
                     "epoch": epoch,
                     "args": args}
        
        torch.save(save_vgg_file, 'checkpoints/fcn_model_Adam-StepLR_1e-2.pth')
        print(f"update checkpoints/fcn_model_Adam-StepLR_1e-2.pth")
        print(f"4--------------Current memory usage: {current_memory / (1024 ** 3):.4f} GB")

每个epoch训练完之后所占内存会不断增加,也就是说,每轮跑完之后会有冗余的数据一直在消耗内存。于是criterion、train_one_epoch、evaluate三个部分

criterion部分

Mem usage:5310 MiBtrain_one_epoch部分

Mem usage:4439 MiB

evaluate部分

Mem usage:10644

evaluate部分可以看到,所占用内存突然增大,并且之后的代码也占用了大量内存,继续监控得知在下一个epoch中criterion部分占用内存也是16064MiB,由此推测出内存消耗在evaluate部分

解决办法:

删除变量数据在for循环外,把暂时不用的可视化代码注释掉,发现占用内存变化很小

解决pytorch训练时的显存占用递增的问题
Pytorch训练过程中,显存(内存)爆炸解决方法
Python代码优化工具------memory_profiler

相关推荐
高洁013 分钟前
AI智能体搭建(3)
人工智能·深度学习·算法·数据挖掘·知识图谱
道可云16 分钟前
道可云人工智能每日资讯|南宁市公布第二批“人工智能+制造”应用场景“机会清单”和“能力清单”
人工智能·制造
ai_top_trends18 分钟前
不同 AI 生成 2026 年工作计划 PPT 的使用门槛对比
人工智能·python·powerpoint
人工智能AI技术24 分钟前
开源大模型选型指南:从LLaMA3到文心ERNIE,实战适配不同业务场景
人工智能
TOWE technology25 分钟前
聚焦价值 重塑增长
大数据·人工智能·企业
老顾聊技术27 分钟前
“Anthropic 最新发布的 AI Skills:赋能任务自动化与跨领域应用“
运维·人工智能·自动化
AI科技星30 分钟前
时空几何:张祥前统一场论20核心公式深度总结
人工智能·线性代数·算法·机器学习·生活
Coovally AI模型快速验证1 小时前
仅192万参数的目标检测模型,Micro-YOLO如何做到目标检测精度与效率兼得
人工智能·神经网络·yolo·目标检测·计算机视觉·目标跟踪·自然语言处理
BOB-wangbaohai1 小时前
软考-系统架构师-未来信息综合技术(一)
人工智能·软考·系统架构设计师
愚公搬代码1 小时前
【愚公系列】《AI+直播营销》024-直播平台选择与引流方法(直播平台的八大引流方法)
人工智能