数学建模-建模算法(4)

python虽然不是完全为数学建模而生的,但是它完整的库让它越来越适合建模了。

  • 线性规划:使用scipy.optimize.linprog()函数
python 复制代码
```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs')
print(res)
```
  • 整数规划:使用scipy.optimize.linprog()函数,并将目标函数系数转换为整数
python 复制代码
```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', integer=True)
print(res)
```
  • 多元规划:使用scipy.optimize.linprog()函数
python 复制代码
```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1, 1], [1, 2, 3]]
b = [6, 4, 5]
x0_bounds = (None, None, None)
x1_bounds = (-3, -3, -3)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs')
print(res)
```
  • 二次规划:使用scipy.optimize.linprog()函数,并将目标函数系数转换为平方项
python 复制代码
```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', square_root=True)
print(res)
```
  • 遗传算法:使用DEAP库
python 复制代码
```python
from deap import base, creator, tools, algorithms
import random

creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)

toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=100)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)

def evalOneMax(individual):
    return sum(individual),

toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)

population = toolbox.population(n=300)
algorithms.eaSimple(population, toolbox, cxpb=0.5, mutpb=0.2, ngen=40)
```
  • 动态规划:使用scipy.optimize.linprog()函数,并将目标函数转换为动态规划问题
python 复制代码
```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs')
print(res)
```
  • 贪心算法:使用scipy.optimize.linprog()函数,并将目标函数转换为贪心策略
python 复制代码
```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', options={'disp': True})
while not res.success:
    if not res.fun:
        print("Objective function value is 0 at point %s" % res.x)
        break
    if res.status == 4:
        print("The algorithm could not find a feasible solution for the problem")
        break
    print(res)
    res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', options={'disp': True})
print(res)
```

下次再更新一些高难度的常见算法。

相关推荐
haaaaaaarry34 分钟前
【分治法】线性时间选择问题
数据结构·算法
CS创新实验室43 分钟前
计算机考研之数据结构:P 问题和 NP 问题
数据结构·考研·算法
OTWOL1 小时前
【C++编程入门基础(一)】
c++·算法
谏君之1 小时前
C语言实现的常见算法示例
c语言·算法·排序算法
机器视觉知识推荐、就业指导2 小时前
【数字图像处理二】图像增强与空域处理
图像处理·人工智能·经验分享·算法·计算机视觉
IT猿手3 小时前
超多目标优化:基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
人工智能·算法·机器学习·matlab·无人机
Erik_LinX3 小时前
算法日记25:01背包(DFS->记忆化搜索->倒叙DP->顺序DP->空间优化)
算法·深度优先
Alidme3 小时前
cs106x-lecture14(Autumn 2017)-SPL实现
c++·学习·算法·codestepbystep·cs106x
小王努力学编程3 小时前
【算法与数据结构】单调队列
数据结构·c++·学习·算法·leetcode
最遥远的瞬间3 小时前
15-贪心算法
算法·贪心算法