数学建模-建模算法(4)

python虽然不是完全为数学建模而生的,但是它完整的库让它越来越适合建模了。

  • 线性规划:使用scipy.optimize.linprog()函数
python 复制代码
```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs')
print(res)
```
  • 整数规划:使用scipy.optimize.linprog()函数,并将目标函数系数转换为整数
python 复制代码
```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', integer=True)
print(res)
```
  • 多元规划:使用scipy.optimize.linprog()函数
python 复制代码
```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1, 1], [1, 2, 3]]
b = [6, 4, 5]
x0_bounds = (None, None, None)
x1_bounds = (-3, -3, -3)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs')
print(res)
```
  • 二次规划:使用scipy.optimize.linprog()函数,并将目标函数系数转换为平方项
python 复制代码
```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', square_root=True)
print(res)
```
  • 遗传算法:使用DEAP库
python 复制代码
```python
from deap import base, creator, tools, algorithms
import random

creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)

toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=100)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)

def evalOneMax(individual):
    return sum(individual),

toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)

population = toolbox.population(n=300)
algorithms.eaSimple(population, toolbox, cxpb=0.5, mutpb=0.2, ngen=40)
```
  • 动态规划:使用scipy.optimize.linprog()函数,并将目标函数转换为动态规划问题
python 复制代码
```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs')
print(res)
```
  • 贪心算法:使用scipy.optimize.linprog()函数,并将目标函数转换为贪心策略
python 复制代码
```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', options={'disp': True})
while not res.success:
    if not res.fun:
        print("Objective function value is 0 at point %s" % res.x)
        break
    if res.status == 4:
        print("The algorithm could not find a feasible solution for the problem")
        break
    print(res)
    res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', options={'disp': True})
print(res)
```

下次再更新一些高难度的常见算法。

相关推荐
workflower3 小时前
单元测试-例子
java·开发语言·算法·django·个人开发·结对编程
MicroTech20255 小时前
微算法科技(MLGO)研发突破性低复杂度CFG算法,成功缓解边缘分裂学习中的掉队者问题
科技·学习·算法
墨染点香5 小时前
LeetCode 刷题【126. 单词接龙 II】
算法·leetcode·职场和发展
aloha_7896 小时前
力扣hot100做题整理91-100
数据结构·算法·leetcode
Tiny番茄6 小时前
31.下一个排列
数据结构·python·算法·leetcode
挂科是不可能出现的6 小时前
最长连续序列
数据结构·c++·算法
前端小L7 小时前
动态规划的“数学之魂”:从DP推演到质因数分解——巧解「只有两个键的键盘」
算法·动态规划
RTC老炮7 小时前
webrtc弱网-ReceiveSideCongestionController类源码分析及算法原理
网络·算法·webrtc
21号 17 小时前
9.Redis 集群(重在理解)
数据库·redis·算法
hadage2339 小时前
--- 数据结构 AVL树 ---
数据结构·算法