数学建模-建模算法(4)

python虽然不是完全为数学建模而生的,但是它完整的库让它越来越适合建模了。

  • 线性规划:使用scipy.optimize.linprog()函数
python 复制代码
```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs')
print(res)
```
  • 整数规划:使用scipy.optimize.linprog()函数,并将目标函数系数转换为整数
python 复制代码
```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', integer=True)
print(res)
```
  • 多元规划:使用scipy.optimize.linprog()函数
python 复制代码
```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1, 1], [1, 2, 3]]
b = [6, 4, 5]
x0_bounds = (None, None, None)
x1_bounds = (-3, -3, -3)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs')
print(res)
```
  • 二次规划:使用scipy.optimize.linprog()函数,并将目标函数系数转换为平方项
python 复制代码
```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', square_root=True)
print(res)
```
  • 遗传算法:使用DEAP库
python 复制代码
```python
from deap import base, creator, tools, algorithms
import random

creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)

toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=100)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)

def evalOneMax(individual):
    return sum(individual),

toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)

population = toolbox.population(n=300)
algorithms.eaSimple(population, toolbox, cxpb=0.5, mutpb=0.2, ngen=40)
```
  • 动态规划:使用scipy.optimize.linprog()函数,并将目标函数转换为动态规划问题
python 复制代码
```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs')
print(res)
```
  • 贪心算法:使用scipy.optimize.linprog()函数,并将目标函数转换为贪心策略
python 复制代码
```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', options={'disp': True})
while not res.success:
    if not res.fun:
        print("Objective function value is 0 at point %s" % res.x)
        break
    if res.status == 4:
        print("The algorithm could not find a feasible solution for the problem")
        break
    print(res)
    res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', options={'disp': True})
print(res)
```

下次再更新一些高难度的常见算法。

相关推荐
Mxsoft61915 分钟前
AR远程定位偏差救场!某次现场故障,SLAM算法精准对齐设备模型!
算法·ar
Hello娃的27 分钟前
【量子力学】Hohenberg-Kohn 定理
人工智能·算法
老马啸西风34 分钟前
成熟企业级技术平台 MVE-010-IGA(Identity Governance & Administration,身份治理与管理)平台
人工智能·深度学习·算法·职场和发展
老马啸西风1 小时前
成熟企业级技术平台 MVE-010-app 管理平台
人工智能·深度学习·算法·职场和发展
lzh_200110121 小时前
树状数组理解
算法
历程里程碑1 小时前
C++ 6 :string类:高效处理字符串的秘密
c语言·开发语言·数据结构·c++·笔记·算法·排序算法
蓝色汪洋1 小时前
luogu迷宫寻路
算法
木头左2 小时前
自适应门限动态调整算法在量化交易策略中的应用
算法
deepdata_cn2 小时前
非线性规划(NLP)算法
算法