Numpy入门(3)—线性代数

线性代数

线性代数(如矩阵乘法、矩阵分解、行列式以及其他方阵数学等)是任何数组库的重要组成部分,NumPy中实现了线性代数中常用的各种操作,并形成了numpy.linalg线性代数相关的模块。本节主要介绍如下函数:

  • diag:以一维数组的形式返回方阵的对角线(或非对角线)元素,或将一维数组转换为方阵(非对角线元素为0)。
  • dot:矩阵乘法。
  • trace:计算对角线元素的和。
  • det:计算矩阵行列式。
  • eig:计算方阵的特征值和特征向量。
  • inv:计算方阵的逆。

向量与矩阵:

矩阵:有多行多列元素组成的一个集合,一个m*n的矩阵,有m行n列个元素

向量:如果一个矩阵只有一列,那么就是一个列向量;如果只有一行,那么就是一个行向量

从某个角度来说,矩阵就是由多个向量组成的

矩阵相乘:

A矩阵:m行

B矩阵:n列

前提:m=n

C矩阵:AB乘积

  • 乘积C的第m行、n列 = 矩阵A的第m行的元素与矩阵B第n列元素的乘积之和
python 复制代码
# 矩阵相乘
a = np.arange(12)
b = a.reshape([3, 4])
c = a.reshape([4, 3])
# 矩阵b的第二维大小,必须等于矩阵c的第一维大小
d = b.dot(c) # 等价于 np.dot(b, c)
print('a: \n{}'.format(a))
print('b: \n{}'.format(b))
print('c: \n{}'.format(c))
print('d: \n{}'.format(d))

a:

[ 0 1 2 3 4 5 6 7 8 9 10 11]

b:

[[ 0 1 2 3]

[ 4 5 6 7]

[ 8 9 10 11]]

c:

[[ 0 1 2]

[ 3 4 5]

[ 6 7 8]

[ 9 10 11]]

d:

[[ 42 48 54]

[114 136 158]

[186 224 262]]

python 复制代码
# numpy.linalg  中有一组标准的矩阵分解运算以及诸如求逆和行列式之类的东西
# np.linalg.diag 以一维数组的形式返回方阵的对角线(或非对角线)元素,
# 或将一维数组转换为方阵(非对角线元素为0)
e = np.diag(d)
f = np.diag(e)
print('d: \n{}'.format(d))
print('e: \n{}'.format(e))
print('f: \n{}'.format(f))

d:

[[ 42 48 54]

[114 136 158]

[186 224 262]]

e:

[ 42 136 262]

f:

[[ 42 0 0]

[ 0 136 0]

[ 0 0 262]]

python 复制代码
# trace, 计算对角线元素的和
g = np.trace(d)
g

440

python 复制代码
# det,计算行列式
h = np.linalg.det(d)
h

1.3642420526593978e-11

python 复制代码
# eig,计算特征值和特征向量
i = np.linalg.eig(d)
i

(array([4.36702561e+02, 3.29743887e+00, 3.13152204e-14]), array([[ 0.17716392, 0.77712552, 0.40824829], [ 0.5095763 , 0.07620532, -0.81649658], [ 0.84198868, -0.62471488, 0.40824829]]))

python 复制代码
# inv,计算方阵的逆
tmp = np.random.rand(3, 3)
j = np.linalg.inv(tmp)
j

array([[-0.59449952, 1.39735912, -0.06654123], [ 1.56034184, -0.40734618, -0.48055062], [ 0.10659811, -0.62164179, 1.30437759]])

补充:矩阵的逆

矩阵的逆是指对于一个n维的矩阵A,存在一个n维的矩阵B,使得A乘以B等于单位矩阵E,即AB=BA=E。其逆矩阵求解方法,有以下几种:

伴随矩阵法: 伴随矩阵法是求解矩阵逆的一种方法。对于一个n维矩阵A,其逆矩阵可以用下式表示:A^(-1)=1/|A| * Adj(A),其中|A|表示A的行列式,Adj(A)表示A的伴随矩阵。伴随矩阵的求法是:先求出矩阵A的代数余子式,然后将其转置得到的矩阵即为伴随矩阵。

初等变换法: 初等变换法是求解矩阵逆的另一种方法。将待求逆的矩阵A和单位矩阵E按行合并成一个矩阵[A|E],然后对其进行初等变换,直到左边的矩阵变为单位矩阵,右边的矩阵即为所求的逆矩阵。

高斯-约旦消元法: 高斯-约旦消元法也是求解矩阵逆的一种方法。将待求逆的矩阵A和单位矩阵E按列合并成一个矩阵[A|E],然后对其进行高斯-约旦消元,直到左边的矩阵变为单位矩阵,右边的矩阵即为所求的逆矩阵。

分块矩阵法: 分块矩阵法适用于分块矩阵的求逆,即将一个大的矩阵分成多个小的矩阵。其方法是将大矩阵A分成四个小矩阵A11、A12、A21、A22,并根据矩阵分块公式求出逆矩阵。

代码合集

python 复制代码
import numpy as np


def func1():
    a = np.arange(12)
    b = a.reshape([3, 4])
    c = a.reshape([4, 3])
    # 矩阵b的第二维大小,必须等于矩阵c的第一维大小
    d = b.dot(c)  # 等价于 np.dot(b, c)
    # np.dot(b, c)
    print('a: \n{}'.format(a))
    print('b: \n{}'.format(b))
    print('c: \n{}'.format(c))
    print('d: \n{}'.format(d))

    # numpy.linalg  中有一组标准的矩阵分解运算以及诸如求逆和行列式之类的东西
    # np.linalg.diag 以一维数组的形式返回方阵的对角线(或非对角线)元素,
    # 或将一维数组转换为方阵(非对角线元素为0)
    print("=========linalg test=========")
    e = np.diag(d)
    f = np.diag(e)
    print('d: \n{}'.format(d))
    print('e: \n{}'.format(e))
    print('f: \n{}'.format(f))

    # 计算对角线元素之和
    g = np.trace(d)
    print(g)
    # det,计算行列式
    h = np.linalg.det(d)
    print(h)
    # eig,计算特征值和特征向量
    i = np.linalg.eig(d)
    print(i)


def func2():
    # 计算方阵的逆
    # https://blog.51cto.com/u_15072903/3963066
    tmp = np.random.rand(3, 3)
    print(tmp)
    j = np.linalg.inv(tmp)
    print(j)

    print(tmp.dot(j))
    print(j.dot(tmp))


if __name__ == "__main__":
    # func1()
    func2()
相关推荐
云云3214 小时前
云手机能用来干什么?云手机在跨境电商领域的用途
服务器·线性代数·安全·智能手机·矩阵
云云3214 小时前
云手机方案总结
服务器·线性代数·安全·智能手机·矩阵
AI小白白猫7 小时前
20241230 基础数学-线性代数-(1)求解特征值(numpy, scipy)
线性代数·numpy·scipy
大山同学1 天前
第三章线性判别函数(二)
线性代数·算法·机器学习
云云3211 天前
搭建云手机平台的技术要求?
服务器·线性代数·安全·智能手机·矩阵
云云3211 天前
云手机有哪些用途?云手机选择推荐
服务器·线性代数·安全·智能手机·矩阵
十年一梦实验室1 天前
【C++】sophus : sim_details.hpp 实现了矩阵函数 W、其导数,以及其逆 (十七)
开发语言·c++·线性代数·矩阵
阿正的梦工坊1 天前
范德蒙矩阵(Vandermonde 矩阵)简介:意义、用途及编程应用
线性代数·矩阵
哲学之窗1 天前
齐次矩阵包含平移和旋转
线性代数·算法·矩阵
原装穿山乙思密达1 天前
如何利用矩阵化简平面上的二次型曲线
线性代数·矩阵·高等代数·解析几何