统计学补充概念-13-逻辑回归

概念

逻辑回归(Logistic Regression)实际上是一种用于解决分类问题的统计学习方法,尽管其名称中带有"回归"一词,但它主要用于处理分类任务。逻辑回归用于预测一个事件发生的概率,并将其映射到一个特定的输出类别。

逻辑回归的基本思想是,通过一个线性组合的方式将输入特征与权重相乘,然后通过一个称为"逻辑函数"或"Sigmoid函数"的激活函数将结果映射到一个0到1之间的概率值。这个概率值可以被解释为样本属于某个类别的概率。Sigmoid函数的公式为:

在训练逻辑回归模型时,通常使用的是最大似然估计方法。模型会尝试寻找一组权重

w,使得观测数据中样本被正确分类的概率最大化。这可以通过最小化损失函数来实现,常用的损失函数是"交叉熵损失"(Cross-Entropy Loss)。

逻辑回归在广泛的领域中应用,如医学、金融、自然语言处理等。它可以用于二分类问题(如判断邮件是否为垃圾邮件)和多分类问题(如图像分类)。虽然逻辑回归是一个线性模型,但它也可以通过特征工程、多项式特征、正则化等技术来应对复杂的分类任务。

需要注意的是,尽管逻辑回归在名称上与线性回归类似,但它们是不同的方法。线性回归用于解决回归问题,旨在预测连续数值输出,而逻辑回归用于分类问题,预测的是概率或离散的类别输出。

代码实现

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# 生成虚拟数据集
np.random.seed(42)
X = np.random.randn(100, 2)  # 100个样本,每个样本有2个特征
y = (X[:, 0] + X[:, 1] > 0).astype(int)  # 标签,根据特征和阈值生成

# 划分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建逻辑回归模型
model = LogisticRegression()

# 在训练集上训练模型
model.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")

# 可视化决策边界
plt.figure(figsize=(10, 6))
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')

# 生成决策边界
coef = model.coef_
intercept = model.intercept_
x_boundary = np.linspace(X[:, 0].min(), X[:, 0].max(), 100)
y_boundary = -(coef[0, 0] * x_boundary + intercept) / coef[0, 1]
plt.plot(x_boundary, y_boundary, 'k--')

plt.title("Decision Boundary")
plt.show()
相关推荐
天上路人1 小时前
AI神经网络降噪算法在语音通话产品中的应用优势与前景分析
深度学习·神经网络·算法·硬件架构·音视频·实时音视频
好吃的肘子1 小时前
MongoDB 应用实战
大数据·开发语言·数据库·算法·mongodb·全文检索
汉克老师2 小时前
GESP2025年3月认证C++二级( 第三部分编程题(1)等差矩阵)
c++·算法·矩阵·gesp二级·gesp2级
lucky_lyovo2 小时前
机器学习-特征工程
人工智能·机器学习
sz66cm2 小时前
算法基础 -- 小根堆构建的两种方式:上浮法与下沉法
数据结构·算法
緈福的街口2 小时前
【leetcode】94. 二叉树的中序遍历
算法·leetcode
小刘要努力呀!2 小时前
嵌入式开发学习(第二阶段 C语言基础)
c语言·学习·算法
我想睡觉2612 小时前
Python训练营打卡DAY27
开发语言·python·机器学习
Jackson@ML3 小时前
一分钟了解机器学习
人工智能·机器学习
野曙3 小时前
快速选择算法:优化大数据中的 Top-K 问题
大数据·数据结构·c++·算法·第k小·第k大