bert-base-chinese 判断上下句

利用BERT等模型来实现语义分割。BERT等模型在预训练的时候采用了NSP(next sentence prediction)的训练任务,因此BERT完全可以判断两个句子(段落)是否具有语义衔接关系。这里我们可以设置相似度阈值 MERGE_RATIO ,从前往后依次判断相邻两个段落的相似度分数是否大于MERGE_RATIO ,如果大于则合并,否则断开。

python 复制代码
import torch
from transformers import BertModel,BertTokenizer
#加载字典和分词工具,即tokenizer
tokenizer= BertTokenizer.from_pretrained('bert-base-chinese')  # 要跟预训练模型相匹配
#加载预训练模型
model= BertModel.from_pretrained('bert-base-chinese')
TEMPERATURE = 1 #温度函数 自定义
MERGE_RATIO = 0.9 #阈值分数 自定义

def is_nextsent(sent, next_sent):

        encoding = tokenizer(sent, next_sent, return_tensors="pt",truncation=True, padding=False)

        with torch.no_grad():
            outputs = model(**encoding, labels=torch.LongTensor([1]))
            logits = outputs.logits
            probs = torch.softmax(logits/TEMPERATURE, dim=1)
            next_sentence_prob = probs[:, 0].item()

        if next_sentence_prob <= MERGE_RATIO:

            return False
        else:
            return True
相关推荐
中科逸视OCR3 天前
当OCR遇见NLP:解析深度学习发票识别中的语义理解与关系抽取模块
nlp·ocr·发票识别
fanstuck3 天前
Prompt提示工程上手指南(六):AI避免“幻觉”(Hallucination)策略下的Prompt
人工智能·语言模型·自然语言处理·nlp·prompt
kida_yuan4 天前
【从零开始】14. 数据评分与筛选
python·数据分析·nlp
nju_spy4 天前
GPT 系列论文1-2 两阶段半监督 + zero-shot prompt
人工智能·gpt·nlp·大语言模型·zero-shot·transformer架构·半监督训练
ACEEE12224 天前
Stanford CS336 | Assignment 2 - FlashAttention-v2 Pytorch & Triotn实现
人工智能·pytorch·python·深度学习·机器学习·nlp·transformer
钝挫力PROGRAMER5 天前
GPT与BERT BGE
人工智能·gpt·bert
kida_yuan6 天前
【从零开始】13. 数据增强(Data Augmentation)
数据结构·python·nlp
A尘埃7 天前
NLP(自然语言处理, Natural Language Processing)
人工智能·自然语言处理·nlp
minhuan7 天前
构建AI智能体:二十八、大语言模型BERT:原理、应用结合日常场景实践全面解析
人工智能·语言模型·自然语言处理·bert·ai大模型·rag
kida_yuan8 天前
【从零开始】12. 一切回归原点
python·架构·nlp